
2019/6/10

1

Software Engineering
1

Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis

and Design
and Iterative Development

Part III Elaboration Iteration I – Basic2

Software Engineering
2

Object-oriented Analysis and Design

Chap 16
UML Class Diagrams

Software Engineering
3

Object-oriented Analysis and Design

Introduction

 Objective of this chapter
Provide a reference for frequently used UML class

diagram notation

 The UML includes class diagrams to illustrate classes,
interfaces, and their associations. They are used for
static object modeling

Software Engineering
4

Object-oriented Analysis and Design
Common UML class diagram notation 1

Software Engineering
5

Object-oriented Analysis and Design

Common UML class diagram notation 2

Software Engineering
6

Object-oriented Analysis and Design

Design Class Diagram (DCD)

Register

...

endSale ()
enterItem (...)
makePayment (...)

Sale

time
isComplete : Boolean
/total

makeLineItem (...)

Register

...

Sale

time
isComplete : Boolean
/total

Captures

1

11

Domain Model

conceptual
perspective

Design Model

DCD ; software
perspective

currentSale

 The same UML diagram can be used in multiple
perspectives
 In a conceptual perspective the class diagram can be used

to visualize a domain model.
Class diagram is used in a software or design perspective,

called design class diagram (DCD)

★

2019/6/10

2

Software Engineering
7

Object-oriented Analysis and Design

Classifier

 A UML classifier is "a model element that describes
behavioral and structure features".

 Classifiers can also be specialized.
They are a generalization of many of the elements of the

UML, including classes, interfaces, use cases, and actors.
 In class diagrams, the two most common classifiers are

regular classes and interfaces.

★

Software Engineering
8

Object-oriented Analysis and Design

Ways to Show UML Attributes

 Ways to Show UML Attributes:
Attribute Text and Association Lines

 Attributes of a classifier are shown several ways:
attribute text notation, such as currentSale : Sale.
association line notation
both together

 The full format of the attribute text notation is:
visibility name : type multiplicity = default {property-
string}

 Guideline: Attributes are usually assumed private if no
visibility is given

★★★

Software Engineering
9

Object-oriented Analysis and Design

Ways to Show UML Attributes 1

Register

...

...

Sale

...

...

1

Register

currentSale : Sale

...

Sale

...

...

using the attribute
text notation to
indicate Register has
a reference to one
Sale instance

using the association notation to indicate
Register has a reference to one Sale instance

OBSERVE : this style
visually emphasizes
the connection
between these classes

currentSale

Register

currentSale : Sale

...

Sale

...

...

1
thorough and
unambiguous , but some
people dislike the
possible redundancy

currentSale

Software Engineering
10

Object-oriented Analysis and Design

Ways to Show UML Attributes 2

the association name, common when drawing a
domain model, is often excluded (though still legal)
when using class diagrams for a software
perspective in a DCD

Register

id: Int

...

Sale

time: DateTime

...

1

currentSale

Register

id : Int

Sale

time : DateTime

Captures-current-sale1 1UP Domain Model
conceptual perspective

UP Design Model
DCD

software perspective

Attribute text versus association line notation for a UML attribute

Software Engineering
11

Object-oriented Analysis and Design

Ways to Show UML Attributes 3

 Guideline: When showing attributes-as-associations,
follow the style in DCDs, which is suggested by the
UML specification. (Fig 16.4 upper)

 Guideline: when using class diagrams for a domain
model do show association names but avoid navigation
arrows, as a domain model is not a software perspective.

Software Engineering
12

Object-oriented Analysis and Design

Ways to Show UML Attributes 4

 Guideline: When to Use Attribute Text versus
Association Lines for Attributes
Use the attribute text notation for data type objects and

the association line notation for others.
Both are semantically equal, but showing an association

line to another class box in the diagram (as in Figure 16.3)
gives visual emphasis - it catches the eye, emphasizing
the connection between the class of objects on the
diagram.

2019/6/10

3

Software Engineering
13

Object-oriented Analysis and Design

Ways to Show UML Attributes 5
Register

id: Int

...

Sale

time: DateTime

...

1
applying the guideline
to show attributes as
attribute text versus as
association lines

Store

address: Address
phone: PhoneNumber

...

1

Register has THREE attributes:
1. id
2. currentSale
3. location

currentSale

location

public class Register {
private int id;
private Sale currentSale;
private Store location;
// …

}

Software Engineering
14

Object-oriented Analysis and Design

Ways to Show UML Attributes 6

 How to Show Collection Attributes with Attribute Text
and Association Lines ?

public class Sale {
private List<SalesLineItem> lineItems =

new ArrayList<SalesLineItem>();
// …
}

}

Software Engineering
15

Object-oriented Analysis and Design

Ways to Show UML Attributes 7

notice that an association end can optionally also
have a property string such as {ordered, List}

Sale

time: DateTime

...

SalesLineItem

...

...

1..*
lineItems

{ordered, List}

Sale

time: DateTime
lineItems : SalesLineItem [1..*]
 or
lineItems : SalesLineItem [1..*] {ordered}

...

SalesLineItem

...

...

Two ways to show a
collection attribute

★★★

Software Engineering
16

Object-oriented Analysis and Design

Operations and Methods 1

 Operations
visibility name (parameter-list) : return-type {property-string}

 Guideline: Assume the version that includes a return type.
 Guideline: Operations are usually assumed public if no visibility is

shown.
 Example

 + getPlayer(name : String) : Player {exception IOException}
 public Player getPlayer(String name) throws IOException

 An operation is not a method.
A UML operation is a declaration, with a name, parameters,

return type, exceptions list, and possibly a set of constraints of
pre-and post-conditions.

But, it isn't an implementation - rather, methods are
implementation

Software Engineering
17

Object-oriented Analysis and Design

Operations and Methods 2

 How to Show Methods in Class Diagrams?
 in interaction diagrams, by the details and sequence of

messages
 in class diagrams, with a UML note symbol stereotyped

with «method»

Register

...

endSale()
enterItem(id, qty)
makeNewSale()
makePayment(cashTendered)

«method»
// pseudo-code or a specific language is OK
public void enterItem(id, qty)
{

ProductDescription desc = catalog.getProductDescription(id);
sale.makeLineItem(desc, qty);

}

Software Engineering
18

Object-oriented Analysis and Design

Keywords 1

 A UML keyword is a textual adornment to categorize a
model element.
For example, the keyword to categorize that a classifier

box is an interface is «interface».
The «actor» keyword was used on p. 91 to replace the

human stick-figure actor icon with a class box to model
computer-system or robotic actors.

 Guideline: When sketching UML - when we want speed,
ease, and creative flow - modelers often simplify
keywords to something like '<interface>' or '<I>'.

2019/6/10

4

Software Engineering
19

Object-oriented Analysis and Design

Keywords 2

 Most keywords are shown in guillemet (« ») but some
are shown in curly braces, such as {abstract}, which is a
constraint containing the abstract keyword.

 In general, when a UML element says it can have a
"property string“ - such as a UML operation and UML
association end have - some of the property string terms
will be keywords used in the curly brace format.

★

Software Engineering
20

Object-oriented Analysis and Design

Stereotypes, Profiles, and Tags

 Stereotypes
 are shown with guillemets symbols
 represents a refinement of an existing modeling concept and is

defined within a UML profile
The UML predefines many stereotypes, such as «destroy» (used

on sequence diagrams), and also allows user-defined ones.
Thus, stereotypes provide an extension mechanism in the UML

 Profiles
 a collection of related stereotypes, tags, and constraints to

specialize the use of the UML for a specific domain or platform
 For example, UML profile for project management or for data

modeling.

Software Engineering
21

Object-oriented Analysis and Design

Stereotypes

«stereotype»
Authorship

author: String
status : String

UML extension
relationship to a basic
UML metamodel term –
Element

«authorship»
author = “craig”
status = “tested”

«metaclass»
Element

...

«authorship»
Square

...

using the stereotype

a tool will probably allow a popup to fill in the tag values,
once an element has been stereotyped with «authorship»

declaring the stereotype

Stereotype declaration and use

×

Software Engineering
22

Object-oriented Analysis and Design

Property and Property String

 In the UML, a property is "a named value denoting a
characteristic of an element. A property has semantic
impact."
Some properties are predefined in the UML, such as

visibility - a property of an operation.
Others can be user-defined.

 Textual presentation approach
UML property string {name1=value1, name2=value2}
such as {abstract, visibility=public}.
Some properties are shown without a value, such as

{abstract};

Software Engineering
23

Object-oriented Analysis and Design

Abstract Classes and Abstract Operations

 Abstract classes and operations can be shown either with
an {abstract} tag (useful when sketching UML) or by
italicizing the name (easy to support in a UML tool).

 The opposite case, final classes and operations that can't
be overridden in subclasses, are shown with the {leaf}
tag.

Software Engineering
24

Object-oriented Analysis and Design

Constraint

 Constraints
 Constraints may be used on most UML diagrams, but are especially

common on class diagrams.
 A UML constraint is a restriction or condition on a UML element.
 It is visualized in text between braces;
 for example: { size >= 0 }.

 The text may be natural language or anything else, such as Object
Constraint Language (OCL)

2019/6/10

5

Software Engineering
25

Object-oriented Analysis and Design

Singleton Classes

1
ServicesFactory

instance : ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : IInventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getInstance () : ServicesFactory

getAccountingAdapter () : IAccountingAdapter
getInventoryAdapter () : IInventoryAdapter
getTaxCalculatorAdapter () : ITaxCalculatorAdapter
...

UML notation : in a
class box , an
underlined attribute or
method indicates a
static (class level)
member , rather than
an instance member

UML notation : this '1'
can optionally be used
to indicate that only one
instance will be created
(a singleton)

Software Engineering
26

Object-oriented Analysis and Design

Generalization

 Generalization in the UML is shown with a solid
line and fat triangular arrow from the subclass to
superclass
A taxonomic relationship between a more

general classifier and a more specific classifier.
Each instance of the specific classifier is also an

indirect instance of the general classifier.
Thus, the specific classifier indirectly has

features of the more general classifier.
 Generalization inheritance?

 It depends. In a domain model conceptual-
perspective class diagram, the answer is no.

 In a DCD software-perspective class diagram, it
implies OOPL inheritance from the superclass to
subclass.

★

Software Engineering
27

Object-oriented Analysis and Design

Dependency 1
 Dependency lines may be used on any diagram, but are especially

common on class and package diagrams.
 The UML includes a general dependency relationship that indicates

that a client element (of any kind, including classes, packages, use
cases, and so on) has knowledge of another supplier element and
that a change in the supplier could affect the client.

 Dependency is illustrated with a dashed arrow line from the client to
supplier.

 Dependency can be viewed as another version of coupling
 There are many kinds of dependency

 having an attribute of the supplier type
 sending a message to a supplier; the visibility to the supplier

could be:
 an attribute, a parameter variable, a local variable, a global

variable, or class visibility (invoking static or class methods)
 receiving a parameter of the supplier type
 the supplier is a superclass or interface

Software Engineering
28

Object-oriented Analysis and Design

Dependency 2

 All of these could be shown with a dependency line in
the UML, but some of these types already have special
lines that suggest the dependency

 When to show a dependency?
Guideline: In class diagrams use the dependency line to
depict global, parameter variable, local variable, and
static-method (when a call is made to a static method of
another class) dependency between objects.

Software Engineering
29

Object-oriented Analysis and Design

Dependency 2

SalesLineItem

...

...

ProductDescription

...

...

1..*
lineItems

Sale

...

updatePriceFor(ProductDescription)
...

the Sale has parameter visibility to a
ProductDescription, and thus some kind of
dependency

Showing dependency

Software Engineering
30

Object-oriented Analysis and Design

Dependency 3

System

...

runFinalization()
...

Foo

...

doX()
...

the doX method invokes the runFinalization
static method, and thus has a dependency on
the System class

«call»Window

a dependency on calling on operations of
the operations of a Clock

Clock

getTime ()
...

«create»A

a dependency that A objects create B objects

B

...

Optional dependency labels in the UML

Showing dependency

2019/6/10

6

Software Engineering
31

Object-oriented Analysis and Design

Interface

Software Engineering
32

Object-oriented Analysis and Design

Composition Over Aggregation 1

 Aggregation is a vague kind of association in the UML
that loosely suggests whole-part relationships
 It has no meaningful distinct semantics in the UML versus

a plain association,
but the term is defined in the UML. Why?

 In spite of the few semantics attached to aggregation,
everybody thinks it is necessary (for different reasons).
Think of it as a modeling placebo. [RJB04]

 Guideline: Therefore, following the advice of UML
creators, don't bother to use aggregation in the UML;
rather, use composition when appropriate

★★

Software Engineering
33

Object-oriented Analysis and Design

Composition Over Aggregation 2

 Composition
also known as composite aggregation, is a strong kind of

whole-part aggregation and is useful to show in some
models.

A composition relationship implies that
1) an instance of the part (such as a Square) belongs to only

one composite instance (such as one Board) at a time,
2) the part must always belong to a composite (no free-

floating Fingers), and
3) the composite is responsible for the creation and deletion

of its parts - either by itself creating/deleting the parts, or by
collaborating with other objects.

 Guideline: The association name in composition is
always implicitly some variation of "Has-part," therefore
don't bother to explicitly name the association

Software Engineering
34

Object-oriented Analysis and Design

Composition Over Aggregation 3

Finger
0..7

Hand

composition

1

Square
40

Board
1

SalesLineItem
1..*

Sale
1

composition means
-a part instance (Square) can only be part of one
composite (Board) at a time

-the composite has sole responsibility for management of
its parts, especially creation and deletion

Software Engineering
35

Object-oriented Analysis and Design

Association Class

 An association class allows you treat an association
itself as a class, and model it with attributes, operations,
and other features.

 For example, if a Company employs many Persons,
modeled with an Employs association, you can model the
association itself as the Employment class, with
attributes such as startDate

salary
startDate

Employment

EmploysCompany Person**

a person may have
employment with several
companies

Software Engineering
36

Object-oriented Analysis and Design

Qualified Association 1

Product
Catalog

Product
Description

itemID Contains

Product
Catalog

Product
Description

Contains

1..*

multiplicity reduced to 1

(a)

(b)

qualifier

1

11

2019/6/10

7

Software Engineering
37

Object-oriented Analysis and Design

Qualified Association 2

 A qualified association has a qualifier that is used to
select an object (or objects) from a larger set of related
objects, based upon the qualifier key.

 Informally, in a software perspective, it suggests looking
things up by a key, such as objects in a HashMap. For
example, if a ProductCatalog contains many
ProductDescriptions, and each one can be selected by an
itemID

Software Engineering
38

Object-oriented Analysis and Design

Relationship Between Interaction and
Class Diagrams

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered)

Register

...

makePayment(…)
...

Sale

...

makePayment(…)
...

1

currentSale

messages in interaction
diagrams indicate operations
in the class diagrams classes

identified in the
interaction
diagrams are
declared in the
class diagrams

Software Engineering
39

Object-oriented Analysis and Design

Template Classes and Interfaces 1

 Many languages (Java, C++, …) support templatized
types, also known (with shades of variant meanings) as
templates, parameterized types, and generics.

 They are most commonly used for the element type of
collection classes, such as the elements of lists and maps.
For example, in Java, suppose that a Board software
object holds a List (an interface for a kind of collection)
of many Squares. And, the concrete class that
implements the List interface is an ArrayList:
public class Board {

private List<Square> squares = new ArrayList<Square>();
// …

}

×

Software Engineering
40

Object-oriented Analysis and Design

Template Classes and Interfaces 2

«interface»

List

clear ()

...

Kparameterized or template

interfaces and classes

K is a template parameter

anonymous class with
template binding complete

Board

squares : List <K Square >
or

squares : List <Square >

...

ArrayList <T Square >

clear ()

...

the attribute type may be expressed in

official UML , with the template binding

syntax requiring an arrow

or
in another language , such as Java

ArrayList

elements : T[*]

...

clear ()
...

T

for example , the elements attribute is an

array of type T , parameterized and bound

before actual use .

there is a chance the UML 2 “arrow” symbol will

eventually be replaced with something else e .g., ‘=’

×

Software Engineering
41

Object-oriented Analysis and Design

User-Defined Compartments

DataAccessObject

id : Int
...

doX()
...

exceptions thrown
DatabaseException
IOException

responsibilities
serialize and write objects
read and deserialize objects
...

×

Software Engineering
42

Object-oriented Analysis and Design

Active Class

 An active object runs on and controls its own thread of
execution.

 The class of an active object is an active class

«interface»
Runnable

run()

Clock

...

run()
...

active class

×

