
2019/6/10

1

Software Engineering
1

Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis

and Design
and Iterative Development

Part III Elaboration Iteration I – Basic2

Software Engineering
2

Object-oriented Analysis and Design

Chap 16
UML Class Diagrams

Software Engineering
3

Object-oriented Analysis and Design

Introduction

 Objective of this chapter
Provide a reference for frequently used UML class

diagram notation

 The UML includes class diagrams to illustrate classes,
interfaces, and their associations. They are used for
static object modeling

Software Engineering
4

Object-oriented Analysis and Design
Common UML class diagram notation 1

Software Engineering
5

Object-oriented Analysis and Design

Common UML class diagram notation 2

Software Engineering
6

Object-oriented Analysis and Design

Design Class Diagram (DCD)

Register

...

endSale ()
enterItem (...)
makePayment (...)

Sale

time
isComplete : Boolean
/total

makeLineItem (...)

Register

...

Sale

time
isComplete : Boolean
/total

Captures

1

11

Domain Model

conceptual
perspective

Design Model

DCD ; software
perspective

currentSale

 The same UML diagram can be used in multiple
perspectives
 In a conceptual perspective the class diagram can be used

to visualize a domain model.
Class diagram is used in a software or design perspective,

called design class diagram (DCD)

★

2019/6/10

2

Software Engineering
7

Object-oriented Analysis and Design

Classifier

 A UML classifier is "a model element that describes
behavioral and structure features".

 Classifiers can also be specialized.
They are a generalization of many of the elements of the

UML, including classes, interfaces, use cases, and actors.
 In class diagrams, the two most common classifiers are

regular classes and interfaces.

★

Software Engineering
8

Object-oriented Analysis and Design

Ways to Show UML Attributes

 Ways to Show UML Attributes:
Attribute Text and Association Lines

 Attributes of a classifier are shown several ways:
attribute text notation, such as currentSale : Sale.
association line notation
both together

 The full format of the attribute text notation is:
visibility name : type multiplicity = default {property-
string}

 Guideline: Attributes are usually assumed private if no
visibility is given

★★★

Software Engineering
9

Object-oriented Analysis and Design

Ways to Show UML Attributes 1

Register

...

...

Sale

...

...

1

Register

currentSale : Sale

...

Sale

...

...

using the attribute
text notation to
indicate Register has
a reference to one
Sale instance

using the association notation to indicate
Register has a reference to one Sale instance

OBSERVE : this style
visually emphasizes
the connection
between these classes

currentSale

Register

currentSale : Sale

...

Sale

...

...

1
thorough and
unambiguous , but some
people dislike the
possible redundancy

currentSale

Software Engineering
10

Object-oriented Analysis and Design

Ways to Show UML Attributes 2

the association name, common when drawing a
domain model, is often excluded (though still legal)
when using class diagrams for a software
perspective in a DCD

Register

id: Int

...

Sale

time: DateTime

...

1

currentSale

Register

id : Int

Sale

time : DateTime

Captures-current-sale1 1UP Domain Model
conceptual perspective

UP Design Model
DCD

software perspective

Attribute text versus association line notation for a UML attribute

Software Engineering
11

Object-oriented Analysis and Design

Ways to Show UML Attributes 3

 Guideline: When showing attributes-as-associations,
follow the style in DCDs, which is suggested by the
UML specification. (Fig 16.4 upper)

 Guideline: when using class diagrams for a domain
model do show association names but avoid navigation
arrows, as a domain model is not a software perspective.

Software Engineering
12

Object-oriented Analysis and Design

Ways to Show UML Attributes 4

 Guideline: When to Use Attribute Text versus
Association Lines for Attributes
Use the attribute text notation for data type objects and

the association line notation for others.
Both are semantically equal, but showing an association

line to another class box in the diagram (as in Figure 16.3)
gives visual emphasis - it catches the eye, emphasizing
the connection between the class of objects on the
diagram.

2019/6/10

3

Software Engineering
13

Object-oriented Analysis and Design

Ways to Show UML Attributes 5
Register

id: Int

...

Sale

time: DateTime

...

1
applying the guideline
to show attributes as
attribute text versus as
association lines

Store

address: Address
phone: PhoneNumber

...

1

Register has THREE attributes:
1. id
2. currentSale
3. location

currentSale

location

public class Register {
private int id;
private Sale currentSale;
private Store location;
// …

}

Software Engineering
14

Object-oriented Analysis and Design

Ways to Show UML Attributes 6

 How to Show Collection Attributes with Attribute Text
and Association Lines ?

public class Sale {
private List<SalesLineItem> lineItems =

new ArrayList<SalesLineItem>();
// …
}

}

Software Engineering
15

Object-oriented Analysis and Design

Ways to Show UML Attributes 7

notice that an association end can optionally also
have a property string such as {ordered, List}

Sale

time: DateTime

...

SalesLineItem

...

...

1..*
lineItems

{ordered, List}

Sale

time: DateTime
lineItems : SalesLineItem [1..*]
 or
lineItems : SalesLineItem [1..*] {ordered}

...

SalesLineItem

...

...

Two ways to show a
collection attribute

★★★

Software Engineering
16

Object-oriented Analysis and Design

Operations and Methods 1

 Operations
visibility name (parameter-list) : return-type {property-string}

 Guideline: Assume the version that includes a return type.
 Guideline: Operations are usually assumed public if no visibility is

shown.
 Example

 + getPlayer(name : String) : Player {exception IOException}
 public Player getPlayer(String name) throws IOException

 An operation is not a method.
A UML operation is a declaration, with a name, parameters,

return type, exceptions list, and possibly a set of constraints of
pre-and post-conditions.

But, it isn't an implementation - rather, methods are
implementation

Software Engineering
17

Object-oriented Analysis and Design

Operations and Methods 2

 How to Show Methods in Class Diagrams?
 in interaction diagrams, by the details and sequence of

messages
 in class diagrams, with a UML note symbol stereotyped

with «method»

Register

...

endSale()
enterItem(id, qty)
makeNewSale()
makePayment(cashTendered)

«method»
// pseudo-code or a specific language is OK
public void enterItem(id, qty)
{

ProductDescription desc = catalog.getProductDescription(id);
sale.makeLineItem(desc, qty);

}

Software Engineering
18

Object-oriented Analysis and Design

Keywords 1

 A UML keyword is a textual adornment to categorize a
model element.
For example, the keyword to categorize that a classifier

box is an interface is «interface».
The «actor» keyword was used on p. 91 to replace the

human stick-figure actor icon with a class box to model
computer-system or robotic actors.

 Guideline: When sketching UML - when we want speed,
ease, and creative flow - modelers often simplify
keywords to something like '<interface>' or '<I>'.

2019/6/10

4

Software Engineering
19

Object-oriented Analysis and Design

Keywords 2

 Most keywords are shown in guillemet (« ») but some
are shown in curly braces, such as {abstract}, which is a
constraint containing the abstract keyword.

 In general, when a UML element says it can have a
"property string“ - such as a UML operation and UML
association end have - some of the property string terms
will be keywords used in the curly brace format.

★

Software Engineering
20

Object-oriented Analysis and Design

Stereotypes, Profiles, and Tags

 Stereotypes
 are shown with guillemets symbols
 represents a refinement of an existing modeling concept and is

defined within a UML profile
The UML predefines many stereotypes, such as «destroy» (used

on sequence diagrams), and also allows user-defined ones.
Thus, stereotypes provide an extension mechanism in the UML

 Profiles
 a collection of related stereotypes, tags, and constraints to

specialize the use of the UML for a specific domain or platform
 For example, UML profile for project management or for data

modeling.

Software Engineering
21

Object-oriented Analysis and Design

Stereotypes

«stereotype»
Authorship

author: String
status : String

UML extension
relationship to a basic
UML metamodel term –
Element

«authorship»
author = “craig”
status = “tested”

«metaclass»
Element

...

«authorship»
Square

...

using the stereotype

a tool will probably allow a popup to fill in the tag values,
once an element has been stereotyped with «authorship»

declaring the stereotype

Stereotype declaration and use

×

Software Engineering
22

Object-oriented Analysis and Design

Property and Property String

 In the UML, a property is "a named value denoting a
characteristic of an element. A property has semantic
impact."
Some properties are predefined in the UML, such as

visibility - a property of an operation.
Others can be user-defined.

 Textual presentation approach
UML property string {name1=value1, name2=value2}
such as {abstract, visibility=public}.
Some properties are shown without a value, such as

{abstract};

Software Engineering
23

Object-oriented Analysis and Design

Abstract Classes and Abstract Operations

 Abstract classes and operations can be shown either with
an {abstract} tag (useful when sketching UML) or by
italicizing the name (easy to support in a UML tool).

 The opposite case, final classes and operations that can't
be overridden in subclasses, are shown with the {leaf}
tag.

Software Engineering
24

Object-oriented Analysis and Design

Constraint

 Constraints
 Constraints may be used on most UML diagrams, but are especially

common on class diagrams.
 A UML constraint is a restriction or condition on a UML element.
 It is visualized in text between braces;
 for example: { size >= 0 }.

 The text may be natural language or anything else, such as Object
Constraint Language (OCL)

2019/6/10

5

Software Engineering
25

Object-oriented Analysis and Design

Singleton Classes

1
ServicesFactory

instance : ServicesFactory

accountingAdapter : IAccountingAdapter
inventoryAdapter : IInventoryAdapter
taxCalculatorAdapter : ITaxCalculatorAdapter

getInstance () : ServicesFactory

getAccountingAdapter () : IAccountingAdapter
getInventoryAdapter () : IInventoryAdapter
getTaxCalculatorAdapter () : ITaxCalculatorAdapter
...

UML notation : in a
class box , an
underlined attribute or
method indicates a
static (class level)
member , rather than
an instance member

UML notation : this '1'
can optionally be used
to indicate that only one
instance will be created
(a singleton)

Software Engineering
26

Object-oriented Analysis and Design

Generalization

 Generalization in the UML is shown with a solid
line and fat triangular arrow from the subclass to
superclass
A taxonomic relationship between a more

general classifier and a more specific classifier.
Each instance of the specific classifier is also an

indirect instance of the general classifier.
Thus, the specific classifier indirectly has

features of the more general classifier.
 Generalization inheritance?

 It depends. In a domain model conceptual-
perspective class diagram, the answer is no.

 In a DCD software-perspective class diagram, it
implies OOPL inheritance from the superclass to
subclass.

★

Software Engineering
27

Object-oriented Analysis and Design

Dependency 1
 Dependency lines may be used on any diagram, but are especially

common on class and package diagrams.
 The UML includes a general dependency relationship that indicates

that a client element (of any kind, including classes, packages, use
cases, and so on) has knowledge of another supplier element and
that a change in the supplier could affect the client.

 Dependency is illustrated with a dashed arrow line from the client to
supplier.

 Dependency can be viewed as another version of coupling
 There are many kinds of dependency

 having an attribute of the supplier type
 sending a message to a supplier; the visibility to the supplier

could be:
 an attribute, a parameter variable, a local variable, a global

variable, or class visibility (invoking static or class methods)
 receiving a parameter of the supplier type
 the supplier is a superclass or interface

Software Engineering
28

Object-oriented Analysis and Design

Dependency 2

 All of these could be shown with a dependency line in
the UML, but some of these types already have special
lines that suggest the dependency

 When to show a dependency?
Guideline: In class diagrams use the dependency line to
depict global, parameter variable, local variable, and
static-method (when a call is made to a static method of
another class) dependency between objects.

Software Engineering
29

Object-oriented Analysis and Design

Dependency 2

SalesLineItem

...

...

ProductDescription

...

...

1..*
lineItems

Sale

...

updatePriceFor(ProductDescription)
...

the Sale has parameter visibility to a
ProductDescription, and thus some kind of
dependency

Showing dependency

Software Engineering
30

Object-oriented Analysis and Design

Dependency 3

System

...

runFinalization()
...

Foo

...

doX()
...

the doX method invokes the runFinalization
static method, and thus has a dependency on
the System class

«call»Window

a dependency on calling on operations of
the operations of a Clock

Clock

getTime ()
...

«create»A

a dependency that A objects create B objects

B

...

Optional dependency labels in the UML

Showing dependency

2019/6/10

6

Software Engineering
31

Object-oriented Analysis and Design

Interface

Software Engineering
32

Object-oriented Analysis and Design

Composition Over Aggregation 1

 Aggregation is a vague kind of association in the UML
that loosely suggests whole-part relationships
 It has no meaningful distinct semantics in the UML versus

a plain association,
but the term is defined in the UML. Why?

 In spite of the few semantics attached to aggregation,
everybody thinks it is necessary (for different reasons).
Think of it as a modeling placebo. [RJB04]

 Guideline: Therefore, following the advice of UML
creators, don't bother to use aggregation in the UML;
rather, use composition when appropriate

★★

Software Engineering
33

Object-oriented Analysis and Design

Composition Over Aggregation 2

 Composition
also known as composite aggregation, is a strong kind of

whole-part aggregation and is useful to show in some
models.

A composition relationship implies that
1) an instance of the part (such as a Square) belongs to only

one composite instance (such as one Board) at a time,
2) the part must always belong to a composite (no free-

floating Fingers), and
3) the composite is responsible for the creation and deletion

of its parts - either by itself creating/deleting the parts, or by
collaborating with other objects.

 Guideline: The association name in composition is
always implicitly some variation of "Has-part," therefore
don't bother to explicitly name the association

Software Engineering
34

Object-oriented Analysis and Design

Composition Over Aggregation 3

Finger
0..7

Hand

composition

1

Square
40

Board
1

SalesLineItem
1..*

Sale
1

composition means
-a part instance (Square) can only be part of one
composite (Board) at a time

-the composite has sole responsibility for management of
its parts, especially creation and deletion

Software Engineering
35

Object-oriented Analysis and Design

Association Class

 An association class allows you treat an association
itself as a class, and model it with attributes, operations,
and other features.

 For example, if a Company employs many Persons,
modeled with an Employs association, you can model the
association itself as the Employment class, with
attributes such as startDate

salary
startDate

Employment

EmploysCompany Person**

a person may have
employment with several
companies

Software Engineering
36

Object-oriented Analysis and Design

Qualified Association 1

Product
Catalog

Product
Description

itemID Contains

Product
Catalog

Product
Description

Contains

1..*

multiplicity reduced to 1

(a)

(b)

qualifier

1

11

2019/6/10

7

Software Engineering
37

Object-oriented Analysis and Design

Qualified Association 2

 A qualified association has a qualifier that is used to
select an object (or objects) from a larger set of related
objects, based upon the qualifier key.

 Informally, in a software perspective, it suggests looking
things up by a key, such as objects in a HashMap. For
example, if a ProductCatalog contains many
ProductDescriptions, and each one can be selected by an
itemID

Software Engineering
38

Object-oriented Analysis and Design

Relationship Between Interaction and
Class Diagrams

: Register : Sale

makePayment(cashTendered)

makePayment(cashTendered)

Register

...

makePayment(…)
...

Sale

...

makePayment(…)
...

1

currentSale

messages in interaction
diagrams indicate operations
in the class diagrams classes

identified in the
interaction
diagrams are
declared in the
class diagrams

Software Engineering
39

Object-oriented Analysis and Design

Template Classes and Interfaces 1

 Many languages (Java, C++, …) support templatized
types, also known (with shades of variant meanings) as
templates, parameterized types, and generics.

 They are most commonly used for the element type of
collection classes, such as the elements of lists and maps.
For example, in Java, suppose that a Board software
object holds a List (an interface for a kind of collection)
of many Squares. And, the concrete class that
implements the List interface is an ArrayList:
public class Board {

private List<Square> squares = new ArrayList<Square>();
// …

}

×

Software Engineering
40

Object-oriented Analysis and Design

Template Classes and Interfaces 2

«interface»

List

clear ()

...

Kparameterized or template

interfaces and classes

K is a template parameter

anonymous class with
template binding complete

Board

squares : List <K Square >
or

squares : List <Square >

...

ArrayList <T Square >

clear ()

...

the attribute type may be expressed in

official UML , with the template binding

syntax requiring an arrow

or
in another language , such as Java

ArrayList

elements : T[*]

...

clear ()
...

T

for example , the elements attribute is an

array of type T , parameterized and bound

before actual use .

there is a chance the UML 2 “arrow” symbol will

eventually be replaced with something else e .g., ‘=’

×

Software Engineering
41

Object-oriented Analysis and Design

User-Defined Compartments

DataAccessObject

id : Int
...

doX()
...

exceptions thrown
DatabaseException
IOException

responsibilities
serialize and write objects
read and deserialize objects
...

×

Software Engineering
42

Object-oriented Analysis and Design

Active Class

 An active object runs on and controls its own thread of
execution.

 The class of an active object is an active class

«interface»
Runnable

run()

Clock

...

run()
...

active class

×

