Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis
and Design
and Iterative Development

Part I1I Elaboration Iteration I — Basic?

Software Engineering

Object-oriented Analysis and Design
Introduction

0 Objective of this chapter

OProvide a reference for frequently used UML class
diagram notation

0 The UML includes class diagrams to illustrate classes,
interfaces, and their associations. They are used for
static object modeling

Software Engineering

Object-oriented Analysis and Design

Common UML class diagram notation ,

unl) finallethod() {1eaf} 1/ no averride in subeiass dopansoncy W
synchronizedMathod() { guarded |

impiementation

and N

subdassing SubclasaFoo Ty
0 ordar

assocatcn win
ipsia ... means (et may be elemenis, but nol shown By | MTEECHEs
8 a0k Compariment ofcinlly medns “unknown but o8 &
convention wil bé Used 10 MEAN "o Membeds’

Software Engineering

2019/6/10

Object-oriented Analysis and Design

Chap 16
UML Class Diagrams

Software Engineering

Object-oriented Analysis and Design
Common UML class diagram notation

Supareisssion s 10 ditingiah tho packago
o name hom the cass namo

SuperCisasFon { sosiract)

uncficiaty, s sesond utermative

~chssOrSateAuuS int is common

A | publcAtriove - Sting

Pl - privateAlirbute

wssumodPivalaAtyids
N isinsaizeaAnTbula - Bool = T T
1. csfer name e Pl It
atrbutehtayLogalyBeNul - Svng (0.1] i
Acaliburm fnaiConstantAsirbuto - nt = § { reasOnly) o
dervadAticte T ——
ol . paid int = 1 (reacOnly)
CaN o
k BssumedPubicMathod() bt
20 iorhcy - privatohathod()
& # protectedMethed() Fonitname . Siring)
Koyword ~ packngeVisibieMethod() ;‘fhm.,[) String. Jael
ckors SUpaIcIsssEos(Long)
oA arma(parm1 - Sirng, pam2 - Float)
methocRatumsSometning() - VeggeBurger
ainteriaces methodT hrowsExcepton() (exception 10Exceptan)
Runnable abstractilethod()
SbsacheinodZ0 { abstect} i lemate 8 Frut
ron() finalMathod() (laaf) /f no overress in subciass dependency
ymehonizeaMeos) | guarded |
interface .,
implemertation 5
ans "
ibclsesing SubclassFoo PurchassOrder
Software Engineering
* Object-oriented Analysis and Design

Design Class Diagram (DCD)

0 The same UML diagram can be used in multiple
perspectives
OlIn a conceptual perspective the class diagram can be used
to visualize a domain model.
O Class diagram is used in a software or design perspective,
called design class diagram (DCD)

Domain Model

conceptual
perspective

Register sale
Design Model \
isComplete : Boolean
DCD; software: endsale () currentSale | ftotal
perspective enterlem (...
makePayment (.. makeLineltem (...)

Software Engineerin

* Object-oriented Analysis and Design
Classifier

0 A UML classifier is "a model element that describes
behavioral and structure features".
Q0 Classifiers can also be specialized.
OThey are a generalization of many of the elements of the
UML, including classes, interfaces, use cases, and actors.
Oln class diagrams, the two most common classifiers are
regular classes and interfaces.

Software Engineering

Object-oriented Analysis and Design

Ways to Show UML Attributes

using the attribute Register Sale

text notation to

 currentSale : Sale
indicate Register has u

a reference to one
Sale instance

OBSERVE : this style Register sale

visually emphasizes 1
the connection

O, currentSale

between these classes

using the association notation to indicate
Register has a reference to one Sale instance

thorough and Register ao

unambiguous , but some currentSale Sale 1
people dislike the

currentSale

possible redundancy

Software Engineering

Ways to Show UML Attributes ;

0 Guideline: When showing attributes-as-associations,
follow the style in DCDs, which is suggested by the
UML specification. (Fig 16.4 upper)

0 Guideline: when using class diagrams for a domain
model do show association names but avoid navigation
arrows, as a domain model is not a software perspective.

Software Engineering

2019/6/10

*k K Object-oriented Analysis and Design
Ways to Show UML Attributes

0 Ways to Show UML Attributes:
O Attribute Text and Association Lines

0 Attributes of a classifier are shown several ways:
Qattribute text notation, such as currentSale : Sale.
Qassociation line notation
Oboth together

0 The full format of the attribute text notation is:
Ovisibility name : type multiplicity = default {property-

string}
Q Guideline: Attributes are usually assumed private if no
visibility is given

Software Engineering

Object-oriented Analysis and Design

Ways to Show UML Attributes ,

the association name, common when drawing a
domain model, is often excluded (though still legal)
when using class diagrams for a software
perspective in a DCD

s
UP Domain Model Register 1_Captures-current-sale 1. Sale
conceptual perspective | id:Int time : DateTime:

UP Design Model Register Sale

id: Int time: DateTime

software persp

Attribute text versus association line notation for a UML attribute

Software Engineering

A0

Object-oriented Analysis and Design

Ways to Show UML Attributes 4

0 Guideline: When to Use Attribute Text versus
Association Lines for Attributes

O Use the attribute text notation for data type objects and
the association line notation for others.

OBoth are semantically equal, but showing an association
line to another class box in the diagram (as in Figure 16.3)
gives visual emphasis - it catches the eye, emphasizing
the connection between the class of objects on the
diagram.

Software Engineering

Object-oriented Analysis and Design

Ways to Show UML Attributes 5

Register Sale
applying the guideline q

to show attributes as id: Int time: DateTime
attribute text versus as currentSalo

association lines E

Store

Register has THREE attributes:
1.id

1 | address: Address

phone: PhoneNumber

2. currentSale

3. location Jocation)

public class Register {
private int id;
private Sale currentSale;
private Store location;
W e

}

Software Engineering

e Object-oriented Analysis and Design

Ways to Show UML Attributes ,

Sale SalesLineltem

time: DateTime
lineltems : SalesLineltem [1.."]

or
lineltems : SalesLineltem [1..*] {ordered)

Two ways to show a
collection attribute

Sale SalesLineltem

time: DateTime

lineltem$

{ordered, List} | ...
o

notice that an association end can optionally also
have a property string such as {ordered, List}

Software Engineering

Object-oriented Analysis and Design

Operations and Methods ,

0 How to Show Methods in Class Diagrams?
Oin interaction diagrams, by the details and sequence of
messages
Oin class diagrams, with a UML note symbol stereotyped
with «method»

Register
«method»
Il pseudo-code or a specific language is OK
public void enterltem id, qty)
endSale()
ProductDescription desc= catalog getProductD aty
salemakeLineltem(desc, qty); makeNewSale()
) makePayment(cashTendered)

Software Engineering

2019/6/10

Object-oriented Analysis and Design

Ways to Show UML Attributes

0 How to Show Collection Attributes with Attribute Text
and Association Lines ?

public class Sale {
private List<SalesLineltem> lineltems =
new ArrayList<SalesLineltem>();
/.
}
}

Software Engineering

Object-oriented Analysis and Design

Operations and Methods

0 Operations
visibility name (parameter-list) : return-type {property-string}
0 Guideline: Assume the version that includes a return type.
0 Guideline: Operations are usually assumed public if no visibility is
shown.
0 Example
O + getPlayer(name : String) : Player {exception IOException}
O public Player getPlayer(String name) throws IOException
0 An operation is not a method.

O A UML operation is a declaration, with a name, parameters,
return type, exceptions list, and possibly a set of constraints of
pre-and post-conditions.

OBut, it isn't an implementation - rather, methods are
implementation

Software Engineering

Object-oriented Analysis and Design

Keywords ,

0 A UML keyword is a textual adornment to categorize a
model element.

OFor example, the keyword to categorize that a classifier
box is an interface is «interface.

OThe «actor» keyword was used on p. 91 to replace the
human stick-figure actor icon with a class box to model
computer-system or robotic actors.

0 Guideline: When sketching UML - when we want speed,
ease, and creative flow - modelers often simplify
keywords to something like '<interface>' or '<I>".

Software Engineering

* Object-oriented Analysis and Design
Keywords ,

0 Most keywords are shown in guillemet (« ») but some
are shown in curly braces, such as {abstract}, which is a
constraint containing the abstract keyword.

O In general, when a UML element says it can have a
"property string“ - such as a UML operation and UML
association end have - some of the property string terms
will be keywords used in the curly brace format.

Keyword Meaning Example Usage
«actorn classifier is an actor in class diagram, above classifier
name
winterfacen classifier 15 an interface in class diagram, above classifier
name
{abstract} abstract element; car't be |in clags diagrams, after cl
instantiated N3me or operation name
{ardered} a set of objects have some |in class diagrams, at an
Sof impased order assocition er
X Object-oriented Analysis and Design

Stereotypes

declaring the stereotype

using the stereotype
ool will probably allow a popup to fill in the tag values

once an element has been stereotyped with «authorship»

«metaclass» / «stereotyper «authorship»
Eloment | o Authorship Square
author: String
status : String

Stereotype declaration and use

Software Engineering

Object-oriented Analysis and Design

Abstract Classes and Abstract Operations ¥,

0 Abstract classes and operations can be shown either with
an {abstract} tag (useful when sketching UML) or by
italicizing the name (easy to support in a UML tool).

0 The opposite case, final classes and operations that can't
be overridden in subclasses, are shown with the {leaf}
tag.

SuperclassFoo
5
SuperClassFdo { abstract)

T n—
S A St methodRetumsSomething() : VeggieBurger
{exception 1O

Software Engineering

2019/6/10

Object-oriented Analysis and Design

Stereotypes, Profiles, and Tags

0 Stereotypes
O are shown with guillemets symbols
O represents a refinement of an existing modeling concept and is
defined within a UML profile
O The UML predefines many stereotypes, such as «destroy» (used
on sequence diagrams), and also allows user-defined ones.
O Thus, stereotypes provide an extension mechanism in the UML
Q Profiles
Oa collection of related stereotypes, tags, and constraints to
specialize the use of the UML for a specific domain or platform
O For example, UML profile for project management or for data
modeling.

Software Engineering

20

Object-oriented Analysis and Design
Property and Property String

0 In the UML, a property is "a named value denoting a
characteristic of an element. A property has semantic
impact."

OSome properties are predefined in the UML, such as
visibility - a property of an operation.

O Others can be user-defined.

0 Textual presentation approach

O UML property string {namel=valuel, name2=value2}

Osuch as {abstract, visibility=public}.

OSome properties are shown without a value, such as
{abstract};

Software Engineering

Object-oriented Analysis and Design

Constraint

Q Constraints
O Constraints may be used on most UML diagrams, but are especially
common on class diagrams.
O A UML constraint is a restriction or condition on a UML element.
O It is visualized in text between braces;
* for example: { size >=0 }.
O The text may be natural language or anything else, such as Object
Constraint Language (OCL)
PR
Stack
size ntoger {20 220}

push(element) { post canaiton: new siza = oid size-s 1]
pop(): Ovjecy

(N

{
‘post condion: now 526 = oid sze — 1
)

Software Engineering

s

Object-oriented Analysis and Design

Singleton Classes

1 a
SenvcesFactory : UML notation : tis 1"
UML notation : in a o | instance : ServicesFactory ! to indicate that only one
class box . an ¢ instance will be created
underined_attibute or accountingAdapter : IAccountingAdapter (a singleton)
method indicates a inventoryAdapter llnventoryAdapter
static (class lovel) xC:
member , rather than \
o © | getinstance (): SenicesFactor
0
getlnventoryAdapter () : linventoryAdapter
gelTaxCalculatorAdapter (): MaxCalculatorAdapter

Software Engineering

Object-oriented Analysis and Design

Dependency ,

(u)

Dependency lines may be used on any diagram, but are especially
common on class and package diagrams.
The UML includes a general dependency relationship that indicates
that a client element (of any kind, including classes, packages, use
cases, and so on) has knowledge of another supplier element and
that a change in the supplier could affect the client.
Dependency is illustrated with a dashed arrow line from the client to
supplier.
Dependency can be viewed as another version of coupling
There are many kinds of dependency

O having an attribute of the supplier type

O sending a message to a supplier; the visibility to the supplier

could be:
@ an attribute, a parameter variable, a local variable, a global
variable, or class visibility (invoking static or class methods)
Q receiving a parameter of the supplier type
O the supplier is a superclass or interface

(u)

(u)

(=) =]

Software Engineering

Object-oriented Analysis and Design

Dependency ,

the Sale has parameter visibility to a
ProductDescription, and thus some kind of
dependency

oY ProductDs iption

Sale N A

updatePriceFor(ProductDescription)

\ SalesLineltem
1.5 -

lineltems

Showing dependency

Software Engineering

2019/6/10

* Object-oriented Analysis and Design

Generalization

0 Generalization in the UML is shown with a solid
line and fat triangular arrow from the subclass to

superclass
OA taxonomic relationship between a more o focerad | e
general classifier and a more specific classifier. L po sk,

O Each instance of the specific classifier is also an
indirect instance of the general classifier.
O Thus, the specific classifier indirectly has
features of the more general classifier. ‘Subciasston
0 Generalization = inheritance?
OlIt depends. In a domain model conceptual-
perspective class diagram, the answer is no.
o1In a DCD software-perspective class diagram, it
implies OOPL inheritance from the superclass to
subclass.

Software Engineering

20

Object-oriented Analysis and Design

Dependency ,

0 All of these could be shown with a dependency line in
the UML, but some of these types already have special
lines that suggest the dependency

0 When to show a dependency?

O Guideline: In class diagrams use the dependency line to
depict global, parameter variable, local variable, and
static-method (when a call is made to a static method of
another class) dependency between objects.

lpublic class Sale
{
public void up oeFor(iption on)
i

Money basePrice = description.getPrice();

1
il
1/

)
Software Engineering

20

Object-oriented Analysis and Design

Dependency ;

the doX method invokes the runFinalization
static method, and thus has a dependency on
the System class

System

) -~"| runFinalization()

’
P
‘adependency on calling on operations of
the operations of a_Clock

Software Engineering

[a dopendency that A objects croate 8 objects I

Optional dependency labels in the UML

Object-oriented Analysis and Design

socketling natation M
idow Timer Window1 uses the Timer dependency line notation [
interface
Window? has = dependency on the
ithasa Timer Jabor
with a Clock?2 object
«interfacas Clock2
Timer 4 N
Timee 4" ™ Window2
geTimed) -
goTime)
! Clockt [
! Impemants. and
! provides the Cioekd
H o Timer interface
Clockl Timee Windowd
getTime()
wiTme) sacket line notation k
lollipop notation indicates. Clockd implements I,
and provides the Time:

Timer interface when it collaborates
Timer s a provided interfaco with a Clock object

Software Engineering

Object-oriented Analysis and Design

Composition Over Aggregation ,

0 Composition
Oalso known as composite aggregation, is a strong kind of
whole-part aggregation and is useful to show in some
models.
O A composition relationship implies that
1) an instance of the part (such as a Square) belongs to only
one composite instance (such as one Board) at a time,
#2) the part must always belong to a composite (no free-
floating Fingers), and
3) the composite is responsible for the creation and deletion
of its parts - either by itself creating/deleting the parts, or by
collaborating with other objects.
0 Guideline: The association name in composition is
always implicitly some variation of "Has-part," therefore
don't bother to explicitly name the association

Software Engineering

Object-oriented Analysis and Design
Association Class

0 An association class allows you treat an association
itself as a class, and model it with attributes, operations,
and other features.

0 For example, if a Company employs many Persons,
modeled with an Employs association, you can model the
association itself as the Employment class, with

attributes such as startDate
Company 2 Employs: Ex Person

a person may have Employment
employment with several
companies salary

startDate

Software Engineering

2019/6/10

*k Object-oriented Analysis and Design
Composition Over Aggregation

0 Aggregation is a vague kind of association in the UML
that loosely suggests whole-part relationships
oIt has no meaningful distinct semantics in the UML versus
a plain association,
Obut the term is defined in the UML. Why?

Qln spite of the few semantics attached to aggregation,
everybody thinks it is necessary (for different reasons).
Think of it as a modeling placebo. [RJB04]

0 Guideline: Therefore, following the advice of UML

creators, don't bother to use aggregation in the UML;
rather, use composition when appropriate

Software Engineering

Object-oriented Analysis and Design

Composition Over Aggregation ;

Hand 1 0.7 f composition means
fan inger -a part instance (Square) can only be part of one
o-. composite (Board) at a time
-the composite has sole responsibility for management of

1 40 1 .
Board Sauare Sale SalesLineltem

Software Engineering

Object-oriented Analysis and Design

Qualified Association ,

(@) Product Contains Product
Catalog Y 4.*| Description

1 1
Product Contains Product
®) Catalog ftemiD Description

3] Q

/ A\
qualifier multiplicity reduced to 1 H

Software Engineering

Object-oriented Analysis and Design

Qualified Association ,

0 A qualified association has a qualifier that is used to
select an object (or objects) from a larger set of related
objects, based upon the qualifier key.

0 Informally, in a software perspective, it suggests looking
things up by a key, such as objects in a HashMap. For
example, if a ProductCatalog contains many
ProductDescriptions, and each one can be selected by an
itemID

Software Engineering

% Object-oriented Analysis and Design

Template Classes and Interfaces

0 Many languages (Java, C++, ...) support templatized
types, also known (with shades of variant meanings) as
templates, parameterized types, and generics.

0 They are most commonly used for the element type of
collection classes, such as the elements of /ists and maps.
For example, in Java, suppose that a Board software
object holds a List (an interface for a kind of collection)
of many Squares. And, the concrete class that
implements the List interface is an ArrayList:

public class Board {
private List<Square> squares = new ArrayList<Square>();
/2

Software Engineering

X Object-oriented Analysis and Design

User-Defined Compartments

DataAccessObject
id : Int

doX()

exceptions thrown
DatabaseException
|OException

responsibilities
serialize and write objects
read and deserialize objects

Software Engineering

s

2019/6/10

Object-oriented Analysis and Design

Relationship Between Interaction and
Class Diagrams

\
4
dered !
L i
/ ,/’
messages in interaction /
diagrams indicate operations i T
| in the class diagrams : t /| dasses
\ /| identifiedin the
\ S interaction
\ v diagrams are
\ Register Sale declared in the
\ 1 class diagrams
NE
N

makePayment(...) makePayment(...)

Software Engineering

X Object-oriented Analysis and Design

Template Classes and Interfaces ,

the attribute type may be expressed in
offical ML, with the template binding
ainterfaces syntax requiring an arrow

List

in another language . such as Java

dlear ()

Board

squares : List <K-Square >

H
|
i
anonymous class with i
template binding complete ——

Arraylist

squares List <Square >

elements : T[]
ArayList <T-Square >

dlear () : lear

5, clear () for example , the elements _ attribute is an

™| array of type T, parameterized and bound

3 before actual use
there s a chance the UML 2 “arrow” symbol wil
eventually be replaced with something else e =

Software Engineering

40

% Object-oriented Analysis and Design
Active Class

0 An active object runs on and controls its own thread of
execution.
0 The class of an active object is an active class

. Clock
«interface»
Runnable S [———
run() run()

Software Engineering

2

