Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis
and Design
and Iterative Development

Part I1I Elaboration Iteration I — Basic?

Software Engineering

2019/6/3

Object-oriented Analysis and Design

Chapter 15
UML Interaction Diagrams

Software Engineering

* Object-oriented Analysis and Design
Introduction

0 The UML includes interaction diagrams to illustrate
how objects interact via messages.

Oseq and ication interaction diagrams.

Q This chapter introduces the notation - view it as a
reference to skim through - while subsequent chapters
focus on a more important question: What are key
principles in OO design?

Software Engineering

Object-oriented Analysis and Design

Sequence and Communication Diagrams

0 The term interaction diagram is a generalization of two
more specialized UML diagram types:
O sequence diagrams
O communication diagrams
0 Both can express similar interactions
0 A related diagram is the interaction overview diagram;
O provides a big-picture overview of how a set of interaction
diagrams are related in terms of logic and process-flow.
olt's new to UML 2, and so it's too early to tell if it will be
practically useful.

Software Engineering

Object-oriented Analysis and Design
Sequence Diagram

0 Sequence diagrams illustrate interactions in a kind of
fence format, in which each new object is added to the
right,

public class A {

private B myB = new B();
o doOne } public void doOne() {
: myB.doTwo();
myB.doThree();

A myB: 8

daTwo

aoTheen H }

Software Engineering

Object-oriented Analysis and Design

Communication Diagram

0 Communication diagrams illustrate object interactions in
a graph or network format, in which objects can be
placed anywhere on the diagram

doOne =1

1: doTwo
2:doThree

myB B

Software Engineering

Object-oriented Analysis and Design
Strengths and Weaknesses

0 Sequence diagrams have some advantages over
communication diagrams
OUML specification is more sequence diagram centric -
more thought and effort has been put into the notation and
semantics.
@ Thus, tool support is better and more notation options are
available
Qit is easier to see the call-flow sequence with sequence
diagrams simply read top to bottom.
¢ With communication diagrams we must read the sequence
numbers, such as "1:" and "2:"

Software Engineering

* k Object-oriented Analysis and Design

Strengths and Weaknesses ;

Type Strengths Weaknesses

sequence clearly shows sequence or time forced to extend to the right
ordering of messages when adding new objects;
consumes horizontal space
large set of detailed notation
optians
communication | space economicalflexibility to add | more difficult to see sequence
new objects in two dimensions | of messages

fewer notation options

Software Engineering

V'S ¢ Object-oriented Analysis and Design

Example Communication Diagram

~
direction of message

makePayment{cashTendered) “» 1: mekePaymentcashTendered) = Had

Register

1.1 create(casnTencared) | 7
public class Sale {
private Payment payment; Payment
public void makePayment
(Money cashTendered) {
payment = new Payment
(cashTendered);

Software Engineering

2019/6/3

Object-oriented Analysis and Design

Strengths and Weaknesses ,

0 Advantages of communication diagrams

O communication diagrams have advantages when applying
"UML as sketch" to draw on walls (an Agile Modeling
practice) because they are much more space-efficient.

Oboxes can be easily placed or erased anywhere horizontal
or vertical.

OlIn contrast, new objects in a sequence diagrams must
always be added to the right edge, which is limiting as it
quickly consumes and exhausts right-edge space on a page
(or wall)

Software Engineering

* %k Object-oriented Analysis and Design

Example Sequence Diagram

Regsior sae
' .
o makoPaymeni{cashTondorod) , |
makePoymeniicashTenderad)

L ondercd

Ly payment

1. The message makePayment is
sent to an instance of a Register.
The sender is not identified.

2. The Register instance sends the
makePayment message to a Sale
instance.

3. The Sale instance creates an
instance of a Payment.

What might be some related
code for the Sale class
and its makePayment method?

Software Engineering

A0

Object-oriented Analysis and Design
»

Common UML Interaction Diagram Notation et
v

ol box eprosenting o class

bt o
> o p—-
fome ooy W s K S o
= oo
o «motaclasss
Sale 11 Sale Font
Listis an interface h
ifeling box representing an Weline box representing [
oty Jol dedratisivors W | I
sales interface here, but in UML 2, this jor
hokd Sele objects ArrayList <Sale> colection an absiract class) is legal
sales: .
FEn
ArrayList<Sale> ssleeli] Sue
i roloted I \
‘example i

f . Lifeline boxes to show participants in interactions
Software Engineering P! P

Object-oriented Analysis and Design

Basic Message Expression Syntax

OUML has a standard syntax for these message
expressions
return = (p Type) : returnType
0 Parentheses are usually excluded if there are no
parameters, though still legal.
0 Type information may be excluded if obvious or
unimportant.
0 For example:
Q initialize(code)
O initialize
Qd = getProductDescription(id)
O d = getProductDescription(id:ItemID)
0O d = getProductDescription (id:ItemID) : ProductDescription

ameter : p

Software Engineering

Object-oriented Analysis and Design
Basic Sequence Diagram Notation

0 Lifeline Boxes and Lifelines

OlIn sequence diagrams the lifeline boxes include a vertical
line extending below them - these are the actual lifelines.

O Although virtually all UML examples show the lifeline as
dashed (because of UML 1 influence), in fact the UML 2
specification says it may be solid or dashed.

0 Messages

oEach (typical synchronous) message between objects is
represented with a message expression on a filled-arrowed
solid line between the vertical lifelines

O The time ordering is organized from top to bottom of
lifelines.

Software Engineering

Object-oriented Analysis and Design

Message and Focus of Control ,

0 Sequence diagrams may also show the focus of control
using an execution specification bar (previously called
an activation bar or simply an activation in UML 1).

O The bar is optional.

O Guideline: Drawing the bar is more common (and often
automatic) when using a UML CASE tool, and less
common when wall sketching.

Software Engineering

2019/6/3

Object-oriented Analysis and Design

Singleton Objects

0 In the world of OO design patterns, there is one that is
especially common, called the Singleton pattern
OThere is only one instance of a class instantiated - never

two
: Register 1
9 - Store | the t'implies thisisa W
T Singleton, and accessed
. GOX_ via the Singlaton patiem

SEEL SRR

'
i doA
i
]
i

Software Engineering

Object-oriented Analysis and Desi

Message and Focus of Control ;

Regster salo
o
. ;
ok ol
afoungmessage M L -
whase: sendir il not
b spocied o

execution spocification B
S ctes s o .
control typicsl sychronous message
St i a e o
0 found message:
othe sender will not be specified, is not known, or that the
message is coming from a random source

Software Engineering

Object-oriented Analysis and Design

Illustrating Reply or Returns

0 There are two ways to show the return result from a
message:
O Using the message syntax
@ returnVar = message(parameter).
OUsing a reply (or return) message line at the end of an
activation bar.

Register Sale
1 T
o WXy 41 = getDate ol
.
geiDats o)
aDate

Software Engineering

Object-oriented Analysis and Design
Creation of Instances

Q The arrow is filled if it's a regular synchronous message
(such as implying invoking a Java constructor), or open
(stick arrow) if an asynchronous call.

OThe message name create is not required - anything is
legal - but it's a UML idiom.

0 Object Lifelines and Object Destruction

: Sale
- create(cashTencered] . - paymant 'Y
the «destroy» sterectyped
> message, with the large
X and short ifeline
«desteoys X indicales explicit object
cestruction

Software Engineering

* k Object-oriented Analysis and Design

(S
. . . ¥
Diagram Frames in UML Sequence Diagrams , @

Frame
Operator Meaning

alt Alternative fragment for mutual exclusion conditional logic expressed
in the guards.

loop Loop fragment while guard is true. Can also write loop(n) to indicate
looping n times, There is discussion that the specification will be
enhanced to define a FOR loop, such as foop(i, 1, 20)

opt Optional fragment that executes if guard is true

par Parallel fragments that execute in parallel

region Critical region within which only one thread can run

Software Engineering

Object-oriented Analysis and Design

Mutually Exclusive Conditional Messages

0 An ALT frame is placed around the mutually exclusive

alternatives
tA B c
T T T
00X > i i
i '
' v T
alt [x<10] | 1
; I calculate ! H
. > :
| i 1
| il e |
[else] i
calculate ! >
1
+
1
1

Software Engineering

2019/6/3

Object-oriented Analysis and Design

Diagram Frames in UML Sequence Diagrams

(SAd
&
X

by 18

0 To support conditional and looping constructs (among
many other things), the UML uses frames.
OFrames are regions or fragments of the diagrams;
Othey have an operator or label (such as loop) and a guard
(conditional clause).

A B

k : makeNewSale b;

aUML loop . foop | [mare iems] H
frame, witha i enterltem{itemiD, quantity) >
boolean guard i !
ke [__description, total]
1 1

] i

1 1

! endSale ol

Software Engineering

20

Object-oriented Analysis and Design

Condition message

0 Use UML 1 style only for simple single messages when
sketching

Foo Bar

L color = red] calculate

»
¥y ’i
Software Engineering
2
* % K Object-oriented Analysis and Design

Iteration Over a Collection ,

linettems{i]
Sulv SalosLineltern This lfeiine box represents one
; instance from a collection of many
1= getTonal . SelesLinollem objects.
lnshoms{i s the expression to
1000) 1< Ninettems.size] salect one algment from the

collection of man)
SalesLinsltems; the " valus
refors 10 the same 1" n the guard

in the LOOP frame

st = getSublotal >
e :
i

an action box may contain arbitrary language I,
statements (in this case, incremant ul

itis placed over the lifeling o which it applies

0O A common algorithm is to iterate over all members of a collection (such as
a list or map), sending the same message to each.

0O Often, some kind of iterator object is ultimately used, such as an
implementation of java.util.Iterator or a C++ standard library iterator,
although in the sequence diagram that low-level "mechanism" need not be
shown in the interest of brevity or abstraction.

Software Engineering

s

Object-oriented Analysis and Design
Iteration Over a Collection ,

Q The selector expression is used to select one object from
a group. Lifeline participants should represent one
object, not a collection.

public class Sale {
private List<SalesLineItem> lineltems = new ArrayList<SalesLineltem>();
public Money getTotal() {
Money total = new Money();
Money subtotal = null;
for (SalesLineltem lineltem : lineltems) {
subtotal = lineItem.getSubtotal();
total.add(subtotal);
}
return total;
}
W e

}
Software Engineering

X Object-oriented Analysis and Design
Relating Interaction Diagrams ,

&0 AuthonticatoUsor

8 i
A] c .
H 1 authenticatefid),]
Py ; > |
] doA »l aont .
] ! oo !]
r doM2 »
i auhenticate(dl . 18! umenticateuser '
ot] 4 DoFoo
] c
interacton ocourrence h = aox o
ol it covers-a sl of lfelnes = do¥ ,‘

ol hat the 5d frame it relates o
has the same elines. B and C

Software Engineering

Object-oriented Analysis and Design

Metaclass

0 You can show class or static method calls by using a
lifeline box label that indicates the receiving object is a
class, or more precisely, an instance of a metaclass

0 in Java and Smalltalk, all classes are conceptually or
literally instances of class Class;

0 in .NET classes are instances of class Type. The classes
Class and Type are metaclasses, which means their
instances are themselves classes.

0 A specific class, such as class Calendar, is itself an
instance of class Class. Thus, class Calendar is an
instance of a metaclass! It may help to drink some beer
before trying to understand this.

Software Engineering

2019/6/3

Object-oriented Analysis and Design

Iteration Over a Collection ,

0 Another variation is shown below
O The intent is the same, but details are excluded.
OA team or tool could agree on this simple style by
convention to imply iteration over all the collection

elements
: lineltems{i]
Ssis SalesLineltem
t= getTotal ’ :
' i
H 1
loop h - i
! st = getSubtotal »
' 1
Software Engineering
20
X Object-oriented Analysis and Design

Relating Interaction Diagrams ,

0 An interaction occurrence (also called an interaction use)
is a reference to an interaction within another interaction.
ofor example, when you want to simplify a diagram and
factor out a portion into another diagram, or there is a
reusable interaction occurrence.
OUML tools take advantage of them, because of their
usefulness in relating and linking diagrams.

Software Engineering

20

Object-oriented Analysis and Design
Metaclass ,

message toclass, ora I
static metnod cal

ametaclasss
Calendar

. > locales = getAvailableLocales

public class Foo {
public void doX() {
/] static method call on class
Calendar Locale[] locales = Calendar.getAvailableLocales();
W oo

}
W oo

}

Software Engineering

X Object-oriented Analysis and Design

Polymorphic Messages and Cases

0 How to show it in a sequence diagram? That's a common
UML question.

OTo use multiple sequence diagrams - one that shows the
polymorphic message to the abstract superclass or
interface object, and then separate sequence diagrams
detailing each polymorphic case, each starting with a
found polymorphic message

Payment (bstract}
Payment is an abstract A
superclass, with concrete
subclasses that implement the -
polymarphic authorize oparation 2

% authorize() (abstract}

CreditPayment DebitPayment
authorize() authorize()
Softwarc cuigmicennyg
il
X Object-oriented Analysis and Design

Conti.

& 3tick arrow in UML implies en asynchronous. call A -
active:
filled h he il object
& filed arrow is the more common synchronous cal AT e
In Java, for example, an asynchronaus call may occur as ,
follows:

1 Clock implemants the Runnabia interface stalClock
Thread t = new Thread(new Clock()). create o
tstany). > Clock

the asynchronous start call shways invokes the run method un
on the Runnabls (Clock) object

1 simpify tha UML diagram, the Thraad object and the runFinalization:
start mossage may be avoided (they are standard

“overhead'); instead, the essential detal of the Clock

crealion and the run message imply lhe asynchronous call

Software Engineering

Object-oriented Analysis and Design

Basic Communication Diagram Notation ¥,
0 A link is a connection path between two objects;
Oit indicates some form of navigation and visibility between
the objects is possible
O More formally, a link is an instance of an association.

1: makePayment(cashTendered) —=
1 2:foo -
Register - ‘ ‘Sale
2.1: bar
-

link line | N

Software Engineering

2019/6/3

X Object-oriented Analysis and Design

AT
B

Asynchronous and Synchronous Calls

0 An asynchronous message call does not wait for a
response; it doesn't block.

0 They are used in multi-threaded environments such as
NET and Java so that new threads of execution can be
created and initiated.

0 In Java, for example, you may think of the Thread.start
or Runnable.run (called by Thread.start) message as the
asynchronous starting point to initiate execution on a
new thread

Software Engineering

X Object-oriented Analysis and Design

Conti.

object in rola of abstract B

ke g superclass
Register Payment {abstract)
!
. X
[authorize > siop at this point - don't show any
i i further details for this message
DebilPayment Foo | «CreditPayment Bar
T ' —
o auihorize } ! | o athorize H
I <oA v | dox d
i - | !

separalo diagrams for oach polymorphic concrele case Ik

Software Engineering

Object-oriented Analysis and Design

Message

0 Messages
OEach message between objects is represented with a
message expression and small arrow indicating the
direction of the message.
O Many messages may flow along this link.
O A sequence number is added to show the sequential order
of messages in the current thread of control.

megly 1: msg2 rs
2 msgd -
3 msgd -
Register | Sale
~— 31:msgs

all messages flow on the same ik I

Software Engineering

Object-oriented Analysis and Design

Creation of Instances ,

0 Any message can be used to create an instance, but the convention
in the UML is to use a message named create for this purpose (some
use new).

If another (less obvious) message name is used, the message may be

annotated with a UML stereotype, like so: «create».

0O The create message may include parameters, indicating the passing
of initial values. This indicates, for example, a constructor call with
parameters in Java.

0 Furthermore, the UML tagged value {new} may optionally be added
to the lifeline box to highlight the creation.

0 Tagged values are a flexible extension mechanism in the UML to
add semantically meaningful information to a UML element.

(u)

Software Engineering

Object-oriented Analysis and Design
Message Number Sequencing ,

0 The order of messages is illustrated with sequence
numbers, The numbering scheme is:

OThe first message is not numbered. Thus, msgl is
unnumbered

OActually, a starting number is legal, but it makes all
subsequent numbering more awkward, creating another
level of number-nesting deeper than otherwise necessary.

OThe order and nesting of subsequent messages is shown
with a legal numbering scheme in which nested messages
have a number appended to them.

O You denote nesting by pre-pending the incoming message
number to the outgoing message number

Software Engineering

Object-oriented Analysis and Design

Message Number Sequencing ,

Software Engineering

s

2019/6/3

Object-oriented Analysis and Design

Creation of Instances ,

Three ways to show creation in a ﬂ

his will ﬁ

normally be interpreted as a constructor call

o

1 -
Register Sale
1 —

W Saieiren
«create»

1: make(cashie)
Register 3 Sale

if an unobvious creation message name is used the
message may be stereotyped for clarity

Software Engineering

Object-oriented Analysis and Design

Message Number Sequencing ,

msgl —» - 1:msg2 —»

0

o 11msg3 |

legal numbering

Software Engineering

40

Object-oriented Analysis and Design
Conditional Messages

0 A conditional message is shown by following a sequence
number with a conditional clause in square brackets,
similar to an iteration clause.

0 The message is only sent if the clause evaluates to true.

conditional message, with test H

message1 ¢

o .
1[color=red]: calculate

: Foo

Software Engineering

2

Object-oriented Analysis and Design
. 9".,

Mutually Exclusive Conditional Paths , 245

1aand 1b are mutually
exclusive conditional paths

e
&
— taftestt]: msg2 _,
1b [not test1] : msg4 | 1a.1: msg3

b 1b.1: msg5. c

Software Engineering

4

Object-oriented Analysis and Design
Iteration or Looping

0 If the details of the iteration clause are not important to
the modeler, a simple * can be used.

— —

I - E 1% [i=1.n]: num = nextint E]
O.

iteration is indicated with a * and an optional
iteration clause following the sequence number

Software Engineering

5

Object-oriented Analysis and Design

Messages to a Classes to Invoke
Static Methods

message to class or a
static method call
-

o
1: locs = getAvailableLocales
: Foo
Calendar

doX ¢

Software Engineering

2019/6/3

Object-oriented Analysis and Design

Mutually Exclusive Conditional Paths , 2?

j

0 The example illustrates the sequence numbers with
mutually exclusive conditional paths

0 In this case we must modify the sequence expressions
with a conditional path letter. The first letter used is a by
convention. Either 1a or 1b could execute after msgl.

0 Both are sequence number 1 since either could be the
first internal message.

0O Note that subsequent nested messages are still
consistently prepended with their outer message
sequence. Thus 1b.1 is nested message within 1b.

Software Engineering

a2

Object-oriented Analysis and Design

Iteration Over a Collection

1= getTotal Sa 1 i = 1.n]: st = getSubtotal lineltems{i]:
e
o SalesLineltem

L Q
\

this iteration and recurrence clause indicates This lifeline box represents one instance from a
we are looping across each element of the collection of many SalesLineltem objects.
ineltems collection.

lineltems[]is the expression to select one
element from the collection of man
SalesLineltems; the #Rvalue comes from the
message clause.

t= getTotal Sale 1% st = getSubtotal lin
f SalesLineltem

/

Less precise, but usually good enough to imply
iteration across the collection members

Software Engineering

X Object-oriented Analysis and Design

Polymorphic Messages and Cases

stop at this point- don't show any
polymorphic message further details for this message

o o
= = object in role of abstract 7
doX Register authorize ‘ P t{abstrach G- sui} it

|

| authorize |
|
5

\ separate diagrams for each polymorphic concrete case \

Software Engineering

X Object-oriented Analysis and Design
AL

Asynchronous and Synchronous Calls _\\}

|
startClock)

-
3: runFinalization
ter System : Class

1: create#
asynchronous message
2:run \l, o
active object
oo |

Software Engineering

2019/6/3

Object-oriented Analysis and Design

OAuth 2.0 5XHME (1) |

-
--(A)- Authorization Request ->| Resource |
I owner |
<-(B)-- Autherization Grant ---| |
+
S e +
--(C)-- Authorization Grant -->| Authorization |
client I server
<-(D)----- Access Token ------- | |
A e +
--(E)----- Access Token ------ >| Resource |
| server |
<-(F)--- Protected Resource ---|
S + e +
http://www.r i /blog/2014/05/¢ h_2_0.html

Software Engineering

20

Object-oriented Analysis and Design

OAuth 2.0 5XEMA (2) |

AR
| Resource |
| owner |
| I
e i
A
|
(8)
#o-oo |- - client Identifier > +
-#+----(A)-- & Redirection URT ---->		
user		Authorization
Agent -+----(B)-- User authenticates --->	server	
		I
~#----(C)-- Authorization Code ---<		
e e T e e e St		
	4 v	
(A) (C)		
I 1		
A v 1		
#: ==CaiE 1 1		
	>---(D)-- Authorization Code -------- : I	
cClient	& Redirection URI	
	<---(E)----- Access Token ---- =t	

(w/ Optional Refresh Token)

Software Engineering

Object-oriented Analysis and Design

OAuth 2.0 5XEA (3) |

Ciaid & gwgél

A2; GET Clignitid & CliontURI

Soft

