
2019/6/3

1

Software Engineering
1

Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis

and Design
and Iterative Development

Part III Elaboration Iteration I – Basic2

Software Engineering
2

Object-oriented Analysis and Design

Chapter 15
UML Interaction Diagrams

Software Engineering
3

Object-oriented Analysis and Design

Introduction

 The UML includes interaction diagrams to illustrate
how objects interact via messages.
sequence and communication interaction diagrams.

 This chapter introduces the notation - view it as a
reference to skim through - while subsequent chapters
focus on a more important question: What are key
principles in OO design?

★

Software Engineering
4

Object-oriented Analysis and Design

Sequence and Communication Diagrams

 The term interaction diagram is a generalization of two
more specialized UML diagram types:
sequence diagrams
communication diagrams

 Both can express similar interactions
 A related diagram is the interaction overview diagram;

provides a big-picture overview of how a set of interaction
diagrams are related in terms of logic and process-flow.

 It's new to UML 2, and so it's too early to tell if it will be
practically useful.

Software Engineering
5

Object-oriented Analysis and Design

Sequence Diagram

 Sequence diagrams illustrate interactions in a kind of
fence format, in which each new object is added to the
right,

public class A {
private B myB = new B();
public void doOne() {

myB.doTwo();
myB.doThree();

}
// …

}

Software Engineering
6

Object-oriented Analysis and Design

Communication Diagram

 Communication diagrams illustrate object interactions in
a graph or network format, in which objects can be
placed anywhere on the diagram

2019/6/3

2

Software Engineering
7

Object-oriented Analysis and Design

Strengths and Weaknesses 1

 Sequence diagrams have some advantages over
communication diagrams
UML specification is more sequence diagram centric -

more thought and effort has been put into the notation and
semantics.
Thus, tool support is better and more notation options are

available

 it is easier to see the call-flow sequence with sequence
diagrams simply read top to bottom.
With communication diagrams we must read the sequence

numbers, such as "1:" and "2:"

Software Engineering
8

Object-oriented Analysis and Design

Strengths and Weaknesses 2

 Advantages of communication diagrams
communication diagrams have advantages when applying

"UML as sketch" to draw on walls (an Agile Modeling
practice) because they are much more space-efficient.

boxes can be easily placed or erased anywhere horizontal
or vertical.

 In contrast, new objects in a sequence diagrams must
always be added to the right edge, which is limiting as it
quickly consumes and exhausts right-edge space on a page
(or wall)

Software Engineering
9

Object-oriented Analysis and Design

Strengths and Weaknesses 3

★★

Software Engineering
10

Object-oriented Analysis and Design

Example Sequence Diagram

1. The message makePayment is
sent to an instance of a Register.
The sender is not identified.

2. The Register instance sends the
makePayment message to a Sale
instance.

3. The Sale instance creates an
instance of a Payment.

What might be some related
code for the Sale class
and its makePaymentmethod?

★★ ★

Software Engineering
11

Object-oriented Analysis and Design

Example Communication Diagram

public class Sale {
private Payment payment;
public void makePayment

(Money cashTendered) {
payment = new Payment

(cashTendered);
//…

}
// …

}

★★ ★

Software Engineering
12

Object-oriented Analysis and Design

Common UML Interaction Diagram Notation

Lifeline boxes to show participants in interactions

2019/6/3

3

Software Engineering
13

Object-oriented Analysis and Design

Basic Message Expression Syntax

 UML has a standard syntax for these message
expressions
return = message(parameter : parameterType) : returnType

 Parentheses are usually excluded if there are no
parameters, though still legal.

 Type information may be excluded if obvious or
unimportant.

 For example:
 initialize(code)
 initialize
 d = getProductDescription(id)
 d = getProductDescription(id:ItemID)
 d = getProductDescription (id:ItemID) : ProductDescription

Software Engineering
14

Object-oriented Analysis and Design

Singleton Objects

 In the world of OO design patterns, there is one that is
especially common, called the Singleton pattern
There is only one instance of a class instantiated - never

two

Software Engineering
15

Object-oriented Analysis and Design

Basic Sequence Diagram Notation

 Lifeline Boxes and Lifelines
 In sequence diagrams the lifeline boxes include a vertical

line extending below them - these are the actual lifelines.
Although virtually all UML examples show the lifeline as

dashed (because of UML 1 influence), in fact the UML 2
specification says it may be solid or dashed.

 Messages
Each (typical synchronous) message between objects is

represented with a message expression on a filled-arrowed
solid line between the vertical lifelines

 The time ordering is organized from top to bottom of
lifelines.

Software Engineering
16

Object-oriented Analysis and Design

Message and Focus of Control 1

 found message:
 the sender will not be specified, is not known, or that the

message is coming from a random source

Software Engineering
17

Object-oriented Analysis and Design

Message and Focus of Control 2

 Sequence diagrams may also show the focus of control
using an execution specification bar (previously called
an activation bar or simply an activation in UML 1).
The bar is optional.
Guideline: Drawing the bar is more common (and often

automatic) when using a UML CASE tool, and less
common when wall sketching.

Software Engineering
18

Object-oriented Analysis and Design

Illustrating Reply or Returns

 There are two ways to show the return result from a
message:
Using the message syntax
returnVar = message(parameter).

Using a reply (or return) message line at the end of an
activation bar.

2019/6/3

4

Software Engineering
19

Object-oriented Analysis and Design

Creation of Instances

 The arrow is filled if it's a regular synchronous message
(such as implying invoking a Java constructor), or open
(stick arrow) if an asynchronous call.
The message name create is not required - anything is

legal - but it's a UML idiom.

 Object Lifelines and Object Destruction

Software Engineering
20

Object-oriented Analysis and Design

Diagram Frames in UML Sequence Diagrams 1

 To support conditional and looping constructs (among
many other things), the UML uses frames.
Frames are regions or fragments of the diagrams;
 they have an operator or label (such as loop) and a guard

(conditional clause).

Software Engineering
21

Object-oriented Analysis and Design

Diagram Frames in UML Sequence Diagrams 2

★★

Software Engineering
22

Object-oriented Analysis and Design

Condition message

 Use UML 1 style only for simple single messages when
sketching

Software Engineering
23

Object-oriented Analysis and Design

Mutually Exclusive Conditional Messages

 An ALT frame is placed around the mutually exclusive
alternatives

Software Engineering
24

Object-oriented Analysis and Design

Iteration Over a Collection 1

 A common algorithm is to iterate over all members of a collection (such as
a list or map), sending the same message to each.

 Often, some kind of iterator object is ultimately used, such as an
implementation of java.util.Iterator or a C++ standard library iterator,
although in the sequence diagram that low-level "mechanism" need not be
shown in the interest of brevity or abstraction.

★★ ★

2019/6/3

5

Software Engineering
25

Object-oriented Analysis and Design

Iteration Over a Collection 2

 The selector expression is used to select one object from
a group. Lifeline participants should represent one
object, not a collection.

public class Sale {
private List<SalesLineItem> lineItems = new ArrayList<SalesLineItem>();
public Money getTotal() {

Money total = new Money();
Money subtotal = null;
for (SalesLineItem lineItem : lineItems) {

subtotal = lineItem.getSubtotal();
total.add(subtotal);

}
return total;
}
// …

}
Software Engineering

26

Object-oriented Analysis and Design

Iteration Over a Collection 3

 Another variation is shown below
The intent is the same, but details are excluded.
A team or tool could agree on this simple style by

convention to imply iteration over all the collection
elements

Software Engineering
27

Object-oriented Analysis and Design

Relating Interaction Diagrams 1

×

Software Engineering
28

Object-oriented Analysis and Design

Relating Interaction Diagrams 2

 An interaction occurrence (also called an interaction use)
is a reference to an interaction within another interaction.
 for example, when you want to simplify a diagram and

factor out a portion into another diagram, or there is a
reusable interaction occurrence.

UML tools take advantage of them, because of their
usefulness in relating and linking diagrams.

×

Software Engineering
29

Object-oriented Analysis and Design

Metaclass 1

 You can show class or static method calls by using a
lifeline box label that indicates the receiving object is a
class, or more precisely, an instance of a metaclass

 in Java and Smalltalk, all classes are conceptually or
literally instances of class Class;

 in .NET classes are instances of class Type. The classes
Class and Type are metaclasses, which means their
instances are themselves classes.

 A specific class, such as class Calendar, is itself an
instance of class Class. Thus, class Calendar is an
instance of a metaclass! It may help to drink some beer
before trying to understand this.

Software Engineering
30

Object-oriented Analysis and Design

Metaclass 2

public class Foo {
public void doX() {

// static method call on class
Calendar Locale[] locales = Calendar.getAvailableLocales();

// …
}
// …

}

2019/6/3

6

Software Engineering
31

Object-oriented Analysis and Design

Polymorphic Messages and Cases

 How to show it in a sequence diagram? That's a common
UML question.
To use multiple sequence diagrams - one that shows the

polymorphic message to the abstract superclass or
interface object, and then separate sequence diagrams
detailing each polymorphic case, each starting with a
found polymorphic message

×

Software Engineering
32

Object-oriented Analysis and Design

Asynchronous and Synchronous Calls

 An asynchronous message call does not wait for a
response; it doesn't block.

 They are used in multi-threaded environments such as
.NET and Java so that new threads of execution can be
created and initiated.

 In Java, for example, you may think of the Thread.start
or Runnable.run (called by Thread.start) message as the
asynchronous starting point to initiate execution on a
new thread

×

Software Engineering
33

Object-oriented Analysis and Design

Conti.

×

Software Engineering
34

Object-oriented Analysis and Design

Conti.

×

Software Engineering
35

Object-oriented Analysis and Design

Basic Communication Diagram Notation

 A link is a connection path between two objects;
 it indicates some form of navigation and visibility between

the objects is possible
More formally, a link is an instance of an association.

Software Engineering
36

Object-oriented Analysis and Design

Message

 Messages
Each message between objects is represented with a

message expression and small arrow indicating the
direction of the message.

Many messages may flow along this link.
A sequence number is added to show the sequential order

of messages in the current thread of control.

2019/6/3

7

Software Engineering
37

Object-oriented Analysis and Design

Creation of Instances 1

 Any message can be used to create an instance, but the convention
in the UML is to use a message named create for this purpose (some
use new).

 If another (less obvious) message name is used, the message may be
annotated with a UML stereotype, like so: «create».

 The create message may include parameters, indicating the passing
of initial values. This indicates, for example, a constructor call with
parameters in Java.

 Furthermore, the UML tagged value {new} may optionally be added
to the lifeline box to highlight the creation.

 Tagged values are a flexible extension mechanism in the UML to
add semantically meaningful information to a UML element.

Software Engineering
38

Object-oriented Analysis and Design

Creation of Instances 2

1: create(cashier)

: Register :Sale

create message, with optional initializing parameters. This will
normally be interpreted as a constructor call.

«create»
1: make(cashier)

: Register :Sale

if an unobvious creation message name is used, the
message may be stereotyped for clarity

1: create(cashier)

: Register :Sale {new}

Three ways to show creation in a
communication diagram

Software Engineering
39

Object-oriented Analysis and Design

Message Number Sequencing 1

 The order of messages is illustrated with sequence
numbers, The numbering scheme is:
The first message is not numbered. Thus, msg1 is

unnumbered
Actually, a starting number is legal, but it makes all

subsequent numbering more awkward, creating another
level of number-nesting deeper than otherwise necessary.

The order and nesting of subsequent messages is shown
with a legal numbering scheme in which nested messages
have a number appended to them.

You denote nesting by pre-pending the incoming message
number to the outgoing message number

Software Engineering
40

Object-oriented Analysis and Design

Message Number Sequencing 2

: Amsg1 : B1: msg2

: C

1.1: msg3
not numbered

legal numbering

Software Engineering
41

Object-oriented Analysis and Design

Message Number Sequencing 3

: Amsg1 : B1: msg2

: C

1.1: msg3

2.1: msg5

2: msg4

: D

2.2: msg6

first second

fourth

sixth

fifth

third

Software Engineering
42

Object-oriented Analysis and Design

Conditional Messages

 A conditional message is shown by following a sequence
number with a conditional clause in square brackets,
similar to an iteration clause.

 The message is only sent if the clause evaluates to true.

1 [color = red] : calculate
: Foo : Bar

message1

conditional message, with test

2019/6/3

8

Software Engineering
43

Object-oriented Analysis and Design

Mutually Exclusive Conditional Paths 1

1a [test1] : msg2

: A : B

: C

1a.1: msg3

msg1

: D

1b [not test1] : msg4

1b.1: msg5

: E

2: msg6

unconditional after
either msg2 or msg4 1a and 1b are mutually

exclusive conditional paths

Software Engineering
44

Object-oriented Analysis and Design

Mutually Exclusive Conditional Paths 2

 The example illustrates the sequence numbers with
mutually exclusive conditional paths

 In this case we must modify the sequence expressions
with a conditional path letter. The first letter used is a by
convention. Either 1a or 1b could execute after msg1.

 Both are sequence number 1 since either could be the
first internal message.

 Note that subsequent nested messages are still
consistently prepended with their outer message
sequence. Thus 1b.1 is nested message within 1b.

Software Engineering
45

Object-oriented Analysis and Design

Iteration or Looping

1 * [i = 1..n]: num = nextInt: SimulatorrunSimulation : Random

iteration is indicated with a * and an optional
iteration clause following the sequence number

 If the details of the iteration clause are not important to
the modeler, a simple * can be used.

Software Engineering
46

Object-oriented Analysis and Design

Iteration Over a Collection

1 * [i = 1..n]: st = getSubtotal: Salet = getTotal

This lifeline box represents one instance from a
collection of many SalesLineItem objects.

lineItems[i] is the expression to select one
element from the collection of many
SalesLineItems; the 慽?value comes from the
message clause.

lineItems[i]:
SalesLineItem

this iteration and recurrence clause indicates
we are looping across each element of the
lineItems collection.

1 *: st = getSubtotal: Salet = getTotal lineItems[i]:
SalesLineItem

Less precise, but usually good enough to imply
iteration across the collection members

Software Engineering
47

Object-oriented Analysis and Design

Messages to a Classes to Invoke
Static Methods

1: locs = getAvailableLocales
: Foo

«metaclass»
Calendar

doX

message to class, or a
static method call

Software Engineering
48

Object-oriented Analysis and Design

Polymorphic Messages and Cases

:Register authorizedoX :Payment {abstract}

polymorphic message

object in role of abstract
superclass

:DebitPayment

authorize

:Foo

stop at this point – don’t show any
further details for this message

separate diagrams for each polymorphic concrete case

doA
doB :CreditPayment

authorize

:Bar
doX

×

2019/6/3

9

Software Engineering
49

Object-oriented Analysis and Design

Asynchronous and Synchronous Calls

3: runFinalization
:ClockStarter System : Class

startClock

:Clock

1: create

2: run

asynchronous message

active object

×

Software Engineering
50

Object-oriented Analysis and Design

OAuth 2.0 与交互图（1）

http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html

Software Engineering
51

Object-oriented Analysis and Design

OAuth 2.0 与交互图（2）

Software Engineering
52

Object-oriented Analysis and Design

OAuth 2.0 与交互图（3）

