
2019/6/3

1

Software Engineering
1

Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis

and Design
and Iterative Development

Part III Elaboration Iteration I – Basic2

Software Engineering
2

Object-oriented Analysis and Design

Chapter 15
UML Interaction Diagrams

Software Engineering
3

Object-oriented Analysis and Design

Introduction

 The UML includes interaction diagrams to illustrate
how objects interact via messages.
sequence and communication interaction diagrams.

 This chapter introduces the notation - view it as a
reference to skim through - while subsequent chapters
focus on a more important question: What are key
principles in OO design?

★

Software Engineering
4

Object-oriented Analysis and Design

Sequence and Communication Diagrams

 The term interaction diagram is a generalization of two
more specialized UML diagram types:
sequence diagrams
communication diagrams

 Both can express similar interactions
 A related diagram is the interaction overview diagram;

provides a big-picture overview of how a set of interaction
diagrams are related in terms of logic and process-flow.

 It's new to UML 2, and so it's too early to tell if it will be
practically useful.

Software Engineering
5

Object-oriented Analysis and Design

Sequence Diagram

 Sequence diagrams illustrate interactions in a kind of
fence format, in which each new object is added to the
right,

public class A {
private B myB = new B();
public void doOne() {

myB.doTwo();
myB.doThree();

}
// …

}

Software Engineering
6

Object-oriented Analysis and Design

Communication Diagram

 Communication diagrams illustrate object interactions in
a graph or network format, in which objects can be
placed anywhere on the diagram

2019/6/3

2

Software Engineering
7

Object-oriented Analysis and Design

Strengths and Weaknesses 1

 Sequence diagrams have some advantages over
communication diagrams
UML specification is more sequence diagram centric -

more thought and effort has been put into the notation and
semantics.
Thus, tool support is better and more notation options are

available

 it is easier to see the call-flow sequence with sequence
diagrams simply read top to bottom.
With communication diagrams we must read the sequence

numbers, such as "1:" and "2:"

Software Engineering
8

Object-oriented Analysis and Design

Strengths and Weaknesses 2

 Advantages of communication diagrams
communication diagrams have advantages when applying

"UML as sketch" to draw on walls (an Agile Modeling
practice) because they are much more space-efficient.

boxes can be easily placed or erased anywhere horizontal
or vertical.

 In contrast, new objects in a sequence diagrams must
always be added to the right edge, which is limiting as it
quickly consumes and exhausts right-edge space on a page
(or wall)

Software Engineering
9

Object-oriented Analysis and Design

Strengths and Weaknesses 3

★★

Software Engineering
10

Object-oriented Analysis and Design

Example Sequence Diagram

1. The message makePayment is
sent to an instance of a Register.
The sender is not identified.

2. The Register instance sends the
makePayment message to a Sale
instance.

3. The Sale instance creates an
instance of a Payment.

What might be some related
code for the Sale class
and its makePaymentmethod?

★★ ★

Software Engineering
11

Object-oriented Analysis and Design

Example Communication Diagram

public class Sale {
private Payment payment;
public void makePayment

(Money cashTendered) {
payment = new Payment

(cashTendered);
//…

}
// …

}

★★ ★

Software Engineering
12

Object-oriented Analysis and Design

Common UML Interaction Diagram Notation

Lifeline boxes to show participants in interactions

2019/6/3

3

Software Engineering
13

Object-oriented Analysis and Design

Basic Message Expression Syntax

 UML has a standard syntax for these message
expressions
return = message(parameter : parameterType) : returnType

 Parentheses are usually excluded if there are no
parameters, though still legal.

 Type information may be excluded if obvious or
unimportant.

 For example:
 initialize(code)
 initialize
 d = getProductDescription(id)
 d = getProductDescription(id:ItemID)
 d = getProductDescription (id:ItemID) : ProductDescription

Software Engineering
14

Object-oriented Analysis and Design

Singleton Objects

 In the world of OO design patterns, there is one that is
especially common, called the Singleton pattern
There is only one instance of a class instantiated - never

two

Software Engineering
15

Object-oriented Analysis and Design

Basic Sequence Diagram Notation

 Lifeline Boxes and Lifelines
 In sequence diagrams the lifeline boxes include a vertical

line extending below them - these are the actual lifelines.
Although virtually all UML examples show the lifeline as

dashed (because of UML 1 influence), in fact the UML 2
specification says it may be solid or dashed.

 Messages
Each (typical synchronous) message between objects is

represented with a message expression on a filled-arrowed
solid line between the vertical lifelines

 The time ordering is organized from top to bottom of
lifelines.

Software Engineering
16

Object-oriented Analysis and Design

Message and Focus of Control 1

 found message:
 the sender will not be specified, is not known, or that the

message is coming from a random source

Software Engineering
17

Object-oriented Analysis and Design

Message and Focus of Control 2

 Sequence diagrams may also show the focus of control
using an execution specification bar (previously called
an activation bar or simply an activation in UML 1).
The bar is optional.
Guideline: Drawing the bar is more common (and often

automatic) when using a UML CASE tool, and less
common when wall sketching.

Software Engineering
18

Object-oriented Analysis and Design

Illustrating Reply or Returns

 There are two ways to show the return result from a
message:
Using the message syntax
returnVar = message(parameter).

Using a reply (or return) message line at the end of an
activation bar.

2019/6/3

4

Software Engineering
19

Object-oriented Analysis and Design

Creation of Instances

 The arrow is filled if it's a regular synchronous message
(such as implying invoking a Java constructor), or open
(stick arrow) if an asynchronous call.
The message name create is not required - anything is

legal - but it's a UML idiom.

 Object Lifelines and Object Destruction

Software Engineering
20

Object-oriented Analysis and Design

Diagram Frames in UML Sequence Diagrams 1

 To support conditional and looping constructs (among
many other things), the UML uses frames.
Frames are regions or fragments of the diagrams;
 they have an operator or label (such as loop) and a guard

(conditional clause).

Software Engineering
21

Object-oriented Analysis and Design

Diagram Frames in UML Sequence Diagrams 2

★★

Software Engineering
22

Object-oriented Analysis and Design

Condition message

 Use UML 1 style only for simple single messages when
sketching

Software Engineering
23

Object-oriented Analysis and Design

Mutually Exclusive Conditional Messages

 An ALT frame is placed around the mutually exclusive
alternatives

Software Engineering
24

Object-oriented Analysis and Design

Iteration Over a Collection 1

 A common algorithm is to iterate over all members of a collection (such as
a list or map), sending the same message to each.

 Often, some kind of iterator object is ultimately used, such as an
implementation of java.util.Iterator or a C++ standard library iterator,
although in the sequence diagram that low-level "mechanism" need not be
shown in the interest of brevity or abstraction.

★★ ★

2019/6/3

5

Software Engineering
25

Object-oriented Analysis and Design

Iteration Over a Collection 2

 The selector expression is used to select one object from
a group. Lifeline participants should represent one
object, not a collection.

public class Sale {
private List<SalesLineItem> lineItems = new ArrayList<SalesLineItem>();
public Money getTotal() {

Money total = new Money();
Money subtotal = null;
for (SalesLineItem lineItem : lineItems) {

subtotal = lineItem.getSubtotal();
total.add(subtotal);

}
return total;
}
// …

}
Software Engineering

26

Object-oriented Analysis and Design

Iteration Over a Collection 3

 Another variation is shown below
The intent is the same, but details are excluded.
A team or tool could agree on this simple style by

convention to imply iteration over all the collection
elements

Software Engineering
27

Object-oriented Analysis and Design

Relating Interaction Diagrams 1

×

Software Engineering
28

Object-oriented Analysis and Design

Relating Interaction Diagrams 2

 An interaction occurrence (also called an interaction use)
is a reference to an interaction within another interaction.
 for example, when you want to simplify a diagram and

factor out a portion into another diagram, or there is a
reusable interaction occurrence.

UML tools take advantage of them, because of their
usefulness in relating and linking diagrams.

×

Software Engineering
29

Object-oriented Analysis and Design

Metaclass 1

 You can show class or static method calls by using a
lifeline box label that indicates the receiving object is a
class, or more precisely, an instance of a metaclass

 in Java and Smalltalk, all classes are conceptually or
literally instances of class Class;

 in .NET classes are instances of class Type. The classes
Class and Type are metaclasses, which means their
instances are themselves classes.

 A specific class, such as class Calendar, is itself an
instance of class Class. Thus, class Calendar is an
instance of a metaclass! It may help to drink some beer
before trying to understand this.

Software Engineering
30

Object-oriented Analysis and Design

Metaclass 2

public class Foo {
public void doX() {

// static method call on class
Calendar Locale[] locales = Calendar.getAvailableLocales();

// …
}
// …

}

2019/6/3

6

Software Engineering
31

Object-oriented Analysis and Design

Polymorphic Messages and Cases

 How to show it in a sequence diagram? That's a common
UML question.
To use multiple sequence diagrams - one that shows the

polymorphic message to the abstract superclass or
interface object, and then separate sequence diagrams
detailing each polymorphic case, each starting with a
found polymorphic message

×

Software Engineering
32

Object-oriented Analysis and Design

Asynchronous and Synchronous Calls

 An asynchronous message call does not wait for a
response; it doesn't block.

 They are used in multi-threaded environments such as
.NET and Java so that new threads of execution can be
created and initiated.

 In Java, for example, you may think of the Thread.start
or Runnable.run (called by Thread.start) message as the
asynchronous starting point to initiate execution on a
new thread

×

Software Engineering
33

Object-oriented Analysis and Design

Conti.

×

Software Engineering
34

Object-oriented Analysis and Design

Conti.

×

Software Engineering
35

Object-oriented Analysis and Design

Basic Communication Diagram Notation

 A link is a connection path between two objects;
 it indicates some form of navigation and visibility between

the objects is possible
More formally, a link is an instance of an association.

Software Engineering
36

Object-oriented Analysis and Design

Message

 Messages
Each message between objects is represented with a

message expression and small arrow indicating the
direction of the message.

Many messages may flow along this link.
A sequence number is added to show the sequential order

of messages in the current thread of control.

2019/6/3

7

Software Engineering
37

Object-oriented Analysis and Design

Creation of Instances 1

 Any message can be used to create an instance, but the convention
in the UML is to use a message named create for this purpose (some
use new).

 If another (less obvious) message name is used, the message may be
annotated with a UML stereotype, like so: «create».

 The create message may include parameters, indicating the passing
of initial values. This indicates, for example, a constructor call with
parameters in Java.

 Furthermore, the UML tagged value {new} may optionally be added
to the lifeline box to highlight the creation.

 Tagged values are a flexible extension mechanism in the UML to
add semantically meaningful information to a UML element.

Software Engineering
38

Object-oriented Analysis and Design

Creation of Instances 2

1: create(cashier)

: Register :Sale

create message, with optional initializing parameters. This will
normally be interpreted as a constructor call.

«create»
1: make(cashier)

: Register :Sale

if an unobvious creation message name is used, the
message may be stereotyped for clarity

1: create(cashier)

: Register :Sale {new}

Three ways to show creation in a
communication diagram

Software Engineering
39

Object-oriented Analysis and Design

Message Number Sequencing 1

 The order of messages is illustrated with sequence
numbers, The numbering scheme is:
The first message is not numbered. Thus, msg1 is

unnumbered
Actually, a starting number is legal, but it makes all

subsequent numbering more awkward, creating another
level of number-nesting deeper than otherwise necessary.

The order and nesting of subsequent messages is shown
with a legal numbering scheme in which nested messages
have a number appended to them.

You denote nesting by pre-pending the incoming message
number to the outgoing message number

Software Engineering
40

Object-oriented Analysis and Design

Message Number Sequencing 2

: Amsg1 : B1: msg2

: C

1.1: msg3
not numbered

legal numbering

Software Engineering
41

Object-oriented Analysis and Design

Message Number Sequencing 3

: Amsg1 : B1: msg2

: C

1.1: msg3

2.1: msg5

2: msg4

: D

2.2: msg6

first second

fourth

sixth

fifth

third

Software Engineering
42

Object-oriented Analysis and Design

Conditional Messages

 A conditional message is shown by following a sequence
number with a conditional clause in square brackets,
similar to an iteration clause.

 The message is only sent if the clause evaluates to true.

1 [color = red] : calculate
: Foo : Bar

message1

conditional message, with test

2019/6/3

8

Software Engineering
43

Object-oriented Analysis and Design

Mutually Exclusive Conditional Paths 1

1a [test1] : msg2

: A : B

: C

1a.1: msg3

msg1

: D

1b [not test1] : msg4

1b.1: msg5

: E

2: msg6

unconditional after
either msg2 or msg4 1a and 1b are mutually

exclusive conditional paths

Software Engineering
44

Object-oriented Analysis and Design

Mutually Exclusive Conditional Paths 2

 The example illustrates the sequence numbers with
mutually exclusive conditional paths

 In this case we must modify the sequence expressions
with a conditional path letter. The first letter used is a by
convention. Either 1a or 1b could execute after msg1.

 Both are sequence number 1 since either could be the
first internal message.

 Note that subsequent nested messages are still
consistently prepended with their outer message
sequence. Thus 1b.1 is nested message within 1b.

Software Engineering
45

Object-oriented Analysis and Design

Iteration or Looping

1 * [i = 1..n]: num = nextInt: SimulatorrunSimulation : Random

iteration is indicated with a * and an optional
iteration clause following the sequence number

 If the details of the iteration clause are not important to
the modeler, a simple * can be used.

Software Engineering
46

Object-oriented Analysis and Design

Iteration Over a Collection

1 * [i = 1..n]: st = getSubtotal: Salet = getTotal

This lifeline box represents one instance from a
collection of many SalesLineItem objects.

lineItems[i] is the expression to select one
element from the collection of many
SalesLineItems; the 慽?value comes from the
message clause.

lineItems[i]:
SalesLineItem

this iteration and recurrence clause indicates
we are looping across each element of the
lineItems collection.

1 *: st = getSubtotal: Salet = getTotal lineItems[i]:
SalesLineItem

Less precise, but usually good enough to imply
iteration across the collection members

Software Engineering
47

Object-oriented Analysis and Design

Messages to a Classes to Invoke
Static Methods

1: locs = getAvailableLocales
: Foo

«metaclass»
Calendar

doX

message to class, or a
static method call

Software Engineering
48

Object-oriented Analysis and Design

Polymorphic Messages and Cases

:Register authorizedoX :Payment {abstract}

polymorphic message

object in role of abstract
superclass

:DebitPayment

authorize

:Foo

stop at this point – don’t show any
further details for this message

separate diagrams for each polymorphic concrete case

doA
doB :CreditPayment

authorize

:Bar
doX

×

2019/6/3

9

Software Engineering
49

Object-oriented Analysis and Design

Asynchronous and Synchronous Calls

3: runFinalization
:ClockStarter System : Class

startClock

:Clock

1: create

2: run

asynchronous message

active object

×

Software Engineering
50

Object-oriented Analysis and Design

OAuth 2.0 与交互图（1）

http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html

Software Engineering
51

Object-oriented Analysis and Design

OAuth 2.0 与交互图（2）

Software Engineering
52

Object-oriented Analysis and Design

OAuth 2.0 与交互图（3）

