
2019/6/3

1

Software Engineering
1

Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to 
Object-oriented Analysis 

and Design 
and Iterative Development

Part III Elaboration Iteration I – Basic2

Software Engineering
2

Object-oriented Analysis and Design

Chap 14
On to Object Design

Software Engineering
3

Object-oriented Analysis and Design

Three Ways to Develop Programs 1

 How do developers design objects? Here are three ways
 Code. Design-while-coding (Java, C#, …), ideally with

power tools such as refactoring.
 Draw, then code. Drawing some UML on a whiteboard

or UML CASE tool, then switching to #1 with a text-
strong IDE (e.g., Eclipse or Visual Studio).

 Only draw. Somehow, the tool generates everything
from diagrams.

 "Only draw" is a misnomer, as this still involves a text
programming language attached to UML graphic
elements.

 This chapter introduces object design and lightweight
drawing before coding, suggesting ways to make it pay
off.

Software Engineering
4

Object-oriented Analysis and Design

Three Ways to Develop Programs 2

 Some aims of agile modeling are to reduce drawing
overhead and model to understand and communicate,
rather than to document though documenting is easy
with digital photos

 Three ways to apply UML [Fowler03].
using lots of whiteboards (ten in a room, not two) or

special white plastic static cling sheets (that work like
whiteboards) covering large wall areas, using markers,
digital cameras, and printers to capture "UML as sketch"

Modeling with others
Creating several models in parallel. For example, five

minutes on a wall of interaction diagrams, then five
minutes on a wall of related class diagrams

Software Engineering
5

Object-oriented Analysis and Design

Tips

 More tips of using Agile
modeling

 It's easy to upload digital
photos of wall drawings to an
internal wiki (see
www.twiki.org) that captures
your project information.

 Popular brands of white plastic
static cling sheets:
Write On Cling Sheets
Magic-Chart

Magic-Chart

Write On Cling Sheets 

Software Engineering
6

Object-oriented Analysis and Design

UML Tools

 Guidelines
Choose a UML CASE tool that integrates with popular

text-strong IDEs, such as Eclipse or Visual Studio.
Choose a UML tool that can reverse-engineer (generate

diagrams from code) not only class diagrams (common),
but also interaction diagrams (more rare, but very useful to
learn call-flow structure of a program).

 Agile modeling on the walls and using a UML CASE
tool integrated into a text-strong IDE can be
complementary. Try both during different phases of
activity.



2019/6/3

2

Software Engineering
7

Object-oriented Analysis and Design

How Much Time Spent Drawing 
UML Before Coding 

 For a three-week timeboxed iteration,
spend a few hours or at most one day (with partners)

near the start of the iteration "at the walls" (or with a UML
CASE tool)

Then stop - and if sketching - perhaps take digital photos,
print the pictures, and transition to coding for the
remainder of the iteration

Using the UML drawings for inspiration as a starting
point, but recognizing that the final design in code will
diverge and improve.

Shorter drawing/sketching sessions may occur throughout
the iteration.

★

Software Engineering
8

Object-oriented Analysis and Design

Designing Objects

 There are two kinds of object models: dynamic and
static.

 Spend a short period of time on interaction diagrams
(dynamics), then switch to a wall of related class
diagrams (statics).

★

Software Engineering
9

Object-oriented Analysis and Design

Dynamic Object Modeling

 Most of the challenging, interesting, useful design work
happens while drawing the UML dynamic-view
interaction diagrams

 Spend significant time doing interaction diagrams
(sequence or communication diagrams), not just class
diagrams.

 Ignoring this guideline is a very common worst-practice
with UML.

Software Engineering
10

Object-oriented Analysis and Design

Static Object Modeling

 After first covering dynamic modeling with interaction
diagrams, we then do the static object modeling

 If the developers are applying the agile modeling
practice of Create several models in parallel, they will
be drawing both interaction and class diagrams
concurrently.

★

Software Engineering
11

Object-oriented Analysis and Design

Object Design Skill 

 The importance of object design skill is over UML notation skill
What's important is knowing how to think and design in objects,

and apply object design best-practice patterns, which is much
more valuable skill than knowing UML notation

Drawing UML is a reflection of making decisions about the
design

 While drawing a UML object diagram, we need to answer key
questions:
What are the responsibilities of the object?
Who does it collaborate with?
What design patterns should be applied?
 Far more important than knowing the difference between UML

1.4 and 2.0 notation! Therefore, the emphasis of the following
chapters is on these principles and patterns in object design.

★

Software Engineering
12

Object-oriented Analysis and Design

Fundamental object design

 The object design skills are what matter, not knowing
how to draw UML. Fundamental object design requires
knowledge of:
principles of responsibility assignment
design patterns

★★★



2019/6/3

3

Software Engineering
13

Object-oriented Analysis and Design

Class Responsibility Card

 A CRC modeling session
involves a group sitting around
a table, discussing and writing
on the cards as they play "what
if" scenarios with the objects,
considering what they must do
and what other objects they
must collaborate with.

Each card represents one class 

×

Software Engineering
14

Object-oriented Analysis and Design

CRC Examples

More detailed: http://c2.com/doc/crc/draw.html

×


