
2019/5/12

1

Software Engineering
1

Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis

and Design
and Iterative Development

Part III Elaboration Iteration I – Basic1

Software Engineering
2

Object-oriented Analysis and Design

Chapters

8. Iteration 1 – basics
9. Domain models
10. System sequence diagrams
11. Operation contracts
12. Requirements to design – iteratively
13. Logical architecture and UML package diagrams
14. On to object design
15. UML interaction diagrams
16. UML class diagrams
17. GRASP: design objects with responsibilities
18. Object design examples with GRASP
19. Design for visibility
20. Mapping design to code
21. Test-driven development and refactoring

Software Engineering
3

Object-oriented Analysis and Design

Software Engineering
4

Object-oriented Analysis and Design

Chap 12
Requirements to Design Iteratively

Software Engineering
5

Object-oriented Analysis and Design

Iteratively
Do the Right Thing, Do the Thing Right

 Object-oriented requirements analysis
 focused on to do the right thing;
understanding some of the outstanding goals, and related rules

and constraints.

 The following design work stress to do the thing right
skillfully designing a solution to satisfy the requirements for

this iteration.
 In iterative development, a transition from primarily

requirements/ analysis to primarily design and
implementation in each iteration.
Early iterations will spend more time on analysis activities.
Later iterations it is common that analysis lessens; there's

more focus on just building the solution.

★

Software Engineering
6

Object-oriented Analysis and Design

Provoking Early Change

 It is natural to change some requirements during the
design and implementation work, especially in the early
iterations.
 Iterative and evolutionary methods "embrace change“
 to have a more stable goal (and estimate and schedule) for

the later iterations.
Early programming, tests, and demos help provoke the

inevitable changes early on.

 The discovery of changing specifications will both
clarify the purpose of the design work of this iteration
and refine the requirements understanding for future
iterations.

★

2019/5/12

2

Software Engineering
7

Object-oriented Analysis and Design

Didn't All That Analysis and
Modeling Take Weeks To Do

 The duration to do all the actual modeling (use case
writing, domain modeling..) that has been explored so far
is realistically just a few hours or days.

 Many other activities of project planning, such as proof-
of-concept programming, finding resources (people,
software, …), planning, setting up the environment could
consume a few weeks of preparation.

★

Software Engineering
8

Object-oriented Analysis and Design

Chap 13
Logical Architecture and
UML Package Diagrams

Software Engineering
9

Object-oriented Analysis and Design

OOD vs. LA

Software Engineering
10

Object-oriented Analysis and Design

POS Example:
Partial Layered, Logical Architecture

Domain

UI

Swing Web

Sales Payments Taxes

Technical Services

Persistence Logging RulesEngine

not the Java
Swing libraries, but
Our GUI classes
Based on Swing

https://blog.csdn.net/pmlpml/article/details/53439095

真实Web 系统的分层逻辑架构

Software Engineering
11

Object-oriented Analysis and Design

Software Architecture

 An architecture
 the set of significant decisions about the organization of

a software system,
 the selection of the structural elements and their

interfaces by which the system is composed
 their behavior as specified in the collaborations among

those elements,
 the composition of these structural and behavioral

elements into progressively larger subsystems,
 the architectural style guides this organization, these

elements and their interfaces, their collaborations, and
their composition.

★

Software Engineering
12

Object-oriented Analysis and Design

Logical Architecture

 Logical architecture
 the large-scale organization of the software classes into

packages (or namespaces), subsystems, and layers.
 there's no decision about how these elements are deployed

across different operating system processes or across
physical computers in a network (these latter decisions are
part of the deployment architecture).

逻辑架构是关于类的分类和组织，即将类分类到包、
子系统或层。与应用领域相关，但与硬件、操作系统
和生产环境关系无关的决策

★

2019/5/12

3

Software Engineering
13

Object-oriented Analysis and Design

Layer Architecture

 Layers in an OO system include:
User Interface.
Application Logic and Domain Objects
representing domain concepts (e.g. software class Sale) that fulfill

application requirements, such as calculating a sale total.
Technical Services
provide supporting technical services, such as interfacing with a

database or error logging. These services are usually application-
independent and reusable across several systems.

 In network protocol stacks, a layer only calls upon the services
of the layer directly below it(strict layered architecture).

 Information system usually has a relaxed layered architecture,
in which a higher layer calls upon several lower layers.

★★

Software Engineering
14

Object-oriented Analysis and Design

Applying UML: Package Diagrams 1

 UML package diagrams are used to illustrate the logical
architecture of a system, the layers, subsystems, packages.
A layer can be modeled as a UML package; e.g., the UI

layer modeled as a package named UI.
 A UML package diagram provides a way to group

elements.
can group anything: classes, other packages, use cases...
Nesting packages is very common, java::util::Date.
A UML package is a more general concept than simply a

Java package or .NET namespace.
To show dependency (a coupling) between packages so that

developers can see the large-scale coupling in the system.
a dashed arrowed line with the arrow pointing towards the

depended-on package.

Software Engineering
15

Object-oriented Analysis and Design

Applying UML: Package Diagrams 2

 to show package nesting, using embedded packages,
UML fully-qualified names, and the circle-cross symbol

Domain::Sales

UI:: WebUI::Swing

Sales

WebSwing

UI

Domain

DomainUI

Swing SalesWeb

Software Engineering
16

Object-oriented Analysis and Design

Guideline: Design with Layers 1

 Organize the large-scale logical structure of a system into discrete
layers of distinct, related responsibilities, with a clean, cohesive
separation of concerns such that the "lower" layers are low-level and
general services, and the higher layers are more application specific.

 Layers helps address problems
 Source code changes are rippling throughout the system, many

parts of the systems are highly coupled.
Application logic is intertwined with the user interface, so it cannot

be reused with a different interface or distributed to another
processing node.

 technical services or business logic is intertwined with more
application-specific logic, so it cannot be reused, distributed to
another node, or easily replaced with a different implementation.

There is high coupling across different areas of concern. It is thus
difficult to divide the work along clear boundaries for different
developers.

Software Engineering
17

Object-oriented Analysis and Design

Guideline: Design with Layers 2

 Benefits of Using Layers
A separation of high from low-level services, and of

application-specific from general services. This reduces
coupling and dependencies, improves cohesion, increases
reuse potential, and increases clarity.

Related complexity is encapsulated and decomposable.
Some layers can be replaced with new implementations.

This is generally not possible for lower-level Technical
Service or Foundation layers (e.g., java.util), but may be
possible for UI, Application, and Domain layers.

Lower layers contain reusable functions.
Some layers (primarily the Domain and Technical Services)

can be distributed.
Development by teams is aided because of the logical

segmentation.

★★★

Software Engineering
18

Object-oriented Analysis and Design

Layers in IS Logical Architecture
UI

(AKA Presentation, View)

Application
(AKA Workflow, Process,
Mediation, App Controller)

Domain
(AKA Business,

Application Logic, Model)

Technical Services
(AKA Technical Infrastructure,
High-level Technical Services)

Foundation
(AKA Core Services, Base Services,

Low-level Technical Services/ Infrastructure)

width implies range of applicability

GUI windows
reports
speech interface
HTML, XML, XSLT, JSP, Javascript, ...

handles presentation layer requests
workflow
session state
window/page transitions
consolidation/transformation of disparate
data for presentation

handles application layer requests
implementation of domain rules
domain services (POS, Inventory)
- services may be used by just one
application, but there is also the possibility
of multi -application services

(relatively) high-level technical services
and frameworks
Persistence, Security

low-level technical services, utilities,
and frameworks
data structures, threads, math,
file, DB, and network I/O

more
app

specific

de
pe

nd
en

cy

Business Infrastructure
(AKA Low-level Business Services)

very general low-level business services
used in many business domains
CurrencyConverter

2019/5/12

4

Software Engineering
19

Object-oriented Analysis and Design

Guideline: Cohesive Responsibilities;
Maintain a Separation of Concerns

 The responsibilities of the objects in a layer should be
strongly related to each other and should not be mixed with
other layers.
UI objects should focus on UI work, such as creating

windows and widgets, capturing mouse and keyboard events.
Objects in the application logic or "domain" layer should

focus on application logic, such as calculating a sales total or
taxes, or moving a piece on a game board.

UI objects should not do application logic. e.g., a Java Swing
JFrame object should not contain logic to calculate taxes or
move a game piece.

Application logic classes should not trap UI mouse or
keyboard events. .

Software Engineering
20

Object-oriented Analysis and Design

Domain Layer/Application Logic Layer
/Domain Objects

 To create software objects with names and information
similar to the real-world domain, and assign
application logic responsibilities to them.
The real world of POS: sales and payments.
Software solution: Sale and Payment class, and give

application logic responsibilities.
 Domain object: represents a thing in the problem domain

space, and has related application or business logic, e.g., a
Sale object being able to calculate its total.

 Domain layer of the architecture: contains domain
objects to handle application logic work.

Software Engineering
21

Object-oriented Analysis and Design

Domain Layer and Domain Model

 The domain layer is part of the software
 The domain model is part of the conceptual-perspective

analysis.
 Create a domain layer from the domain model, to

achieve a lower representational gap, between the real-
world domain, and software design.

 e.g., a Sale in the UP, Domain Model helps to creating a
software Sale class in the domain layer of the Design
Model.

Software Engineering
22

Object-oriented Analysis and Design

Domain Layer and Domain Model

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

Domain layer of the architecture in the UP Design Model
The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

Software Engineering
23

Object-oriented Analysis and Design

Tiers, Layers, and Partitions

 Tier in architecture means a physical processing node
 client tier, client computer

 Layers of architecture represents the vertical slices
 Partitions represent a horizontal division of relatively parallel

subsystems of a layer.
 e.g., the Technical Services layer may be divided into partitions

such as Security and Reporting.

Persistence Security Logging

Technical Services

POS Inventory Tax

Domain

Vertical Layers

Horizontal Partitions
Software Engineering

24

Object-oriented Analysis and Design

Guideline:
Don't Show External Resources as the Bottom Layer

 Most systems rely on external resources or services
 e.g., MySQL in ventory database and Novell LDAP naming and

directory service.
These are physical implementation components, not a layer in

the logical architecture.
 Showing these external resources in a layer "below" the

Foundation layer mixes up the logical view and the deployment
views of the architecture.

 The logical architecture and its layers,
 access to a particular set of persistent data can be viewed as a

sub-domain of the Domain Layer, the Inventory sub-domain.
 the general services that provide access to databases may be

viewed as a Technical Service partition, the Persistence service.

2019/5/12

5

Software Engineering
25

Object-oriented Analysis and Design

Guideline:
Don't Show External Resources as the Bottom Layer

Domain(s)

Technical
Services

Foundation

MySQL
Inventory

Persistence Naming and
Directory Services

Web
AppFramework

Technical Services

POS Inventory

Domain(s)

Foundation

Worse
mixes logical and deployment views

Better
a logical view

a logical representation
of the need for data or
services related to these
subdomains, abstracting
implementation
decisions such as a
database.

«component»
Novell
LDAP

UML notation: A UML component, or replaceable, modular part of the physical system

UML notation: A physical database in the UML.

Software Engineering
26

Object-oriented Analysis and Design

Guideline: Model-View Separation Principle 1

 Model-View Separation principle
model is the domain layer of objects. View is UI objects

(windows mouse click on a button, Web pages, applets).
Do not connect or couple model objects directly to view objects
a Sale object should not directly send a message to a GUI window

object ProcessSaleFrame, asking it to display something, change
color, close.
don't let a Sale object have a reference to a Swing JFrame

window object.
 the windows are related to a particular application, while the

non-windowing objects may be reused in new applications or
attached to a new interface.

Do not put application logic (tax calculation) in UI object
methods.
UI objects should only initialize UI elements, receive UI events,

and delegate requests for application logic on to non-UI objects.

★

Software Engineering
27

Object-oriented Analysis and Design

Guideline: Model-View Separation Principle 2

 Model-View-Controller (MVC).
data objects (models), GUI widgets (views), and mouse and

keyboard event handlers (controllers).
"MVC" has been applied on a large-scale architectural level.

The Model is the Domain Layer, the View is the UI Layer,
and the Controllers are the workflow objects in the
Application layer.

A related pattern of this principle is the Observer pattern.
e.g. a JFrame window should not have a method that does a

tax calculation. A Web JSP page should not contain logic to
calculate the tax. These UI elements should delegate to non-
UI elements for such responsibilities.

★★★

Software Engineering
28

Object-oriented Analysis and Design

Guideline: Model-View Separation Principle 3

 The motivation for Model-View Separation
 Support cohesive model definitions that focus on the domain

processes, rather than on user interfaces.
Allow separate development of the model and user interface layers.
Minimize the impact of requirements changes in the interface upon

the domain layer.
Allow new views to be easily connected to an existing domain layer,

without affecting the domain layer.
Allow multiple simultaneous views on the same model object, such

as both a tabular and business chart view of sales information.
Allow execution of the model layer independent of the user interface

layer, such as a message-processing or batch-mode system.
Allow easy porting of the model layer to another user interface

framework.

Software Engineering
29

Object-oriented Analysis and Design

SSDs, System Operations, and Layers 1

 The SSDs illustrate system operations, hide specific UI objects.
The UI layer, object capture these system operation requests,

with a rich client GUI or Web page.
 e.g., makeNewSale and enterItem.

 In a well-designed layered architecture that supports high cohesion
and a separation of concerns
 the UI layer objects forward or delegate the request from the UI

layer onto the domain layer for handling.
The messages (e.g., enterItem) sent from the UI layer to the

domain layer on the SSDs.
 e.g., Java Swing/GUI window class called ProcessSaleFrame in

the UI layer picks up the mouse and keyboard events requesting
to enter an item, and then the ProcessSaleFrame object will send
an enterItem message on to a software object in the domain
layer, such as Register, to perform the application logic.

Software Engineering
30

Object-oriented Analysis and Design

SSDs, System Operations, and Layers 2

Domain

UI

Swing

ProcessSale
Frame...

... Register

makeNewSale()
enterItem()

: Cashier

makeNewSale()
enterItem()
endSale()

enterItem(id, quantity)
)

:System: Cashier

endSale()

description, total

makeNewSale()

the system operations handled by the system in an SSD represent the
operation calls on the Application or Domain layer from the UI layer

makeNewSale()
enterItem()
endSale()

