
2019/4/14

1

Software Engineering
1

Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis

and Design
and Iterative Development

Part III Elaboration Iteration I – Basic1

Software Engineering
2

Object-oriented Analysis and Design

Chapters

8. Iteration 1 – basics
9. Domain models
10. System sequence diagrams
11. Operation contracts
12. Requirements to design – iteratively
13. Logical architecture and UML package diagrams
14. On to object design
15. UML interaction diagrams
16. UML class diagrams
17. GRASP: design objects with responsibilities
18. Object design examples with GRASP
19. Design for visibility
20. Mapping design to code
21. Test-driven development and refactoring

Software Engineering
3

Object-oriented Analysis and Design

Chap 8
Iteration 1

Basics

Software Engineering
4

Object-oriented Analysis and Design

Iteration 1

 Iteration 1 of the elaboration phase
Requirements and Emphasis: Core OOA/D Skills
Architecture-centric and risk-driven.

 In Iterative Development, Don't Implement All the
Requirements at Once

 Incremental Development for the Same Use Case
Across Iterations

Software Engineering
5

Object-oriented Analysis and Design

Iteration 1

1
A use case or feature is
often too complex to
complete in one short
iteration.

Therefore, different parts
or scenarios must be
allocated to different
iterations.

Use Case
Process Sale

2 3 . . .

Use Case
Process Sale

Use Case
Process Sale

Use Case
Process Rentals

Feature:
Logging

 Use case implementation may be spread across iterations

Software Engineering
6

Object-oriented Analysis and Design

POS Iteration 1

 Requirements for iteration 1 of the POS application
 Implement a basic, key scenario of the Process Sale use

case: entering items and receiving a cash payment.
 Implement a Start Up use case as necessary to support the

initialization needs of the iteration.
Nothing fancy or complex is handled, just a simple happy

path scenario, and the design and implementation to
support it.

There is no collaboration with external services, such as a
tax calculator or product database.

No complex pricing rules are applied.
The design and implementation of the supporting UI,

database, and so forth, would also be done

2019/4/14

2

Software Engineering
7

Object-oriented Analysis and Design

Elaboration 1

 Elaboration: Build the core architecture, resolve the high-
risk elements, define most requirements, and estimate the
overall schedule and resources.

 Elaboration is the initial series of iterations during project
 the core, risky software architecture is programmed and

tested
 the majority of requirements are discovered and stabilized
 the major risks are mitigated or retired

 Elaboration often consists of two or more iterations;
each iteration is recommended to be 2~6 weeks

 Elaboration is not a design phase or a phase when the
models are fully developed in preparation for
implementation.

Software Engineering
8

Object-oriented Analysis and Design

Elaboration 2

 Executable architecture/Architectural baseline/ Architectural
prototype
 to describe the partial system.
a production subset of the final system.

 Some key ideas and best practices will manifest in
elaboration:
do short time boxed risk-driven iterations
start programming early
adaptively design, implement, and test the core and risky parts

of the architecture
 test early, often, realistically
adapt based on feedback from tests, users, developers
write most of the use cases and other requirements in detail,

through a series of workshops, once per elaboration iteration

Software Engineering
9

Object-oriented Analysis and Design

Elaboration 3

A description of the user interface, paths of navigation,
usability models, and so forth.

Use-Case
Storyboards,
UI Prototypes

This includes the database schemas, and the mapping
strategies between object and non-object representations.

Data Model

A learning aid that summarizes the key architectural issues
and their resolution in the design. It is a summary of the
outstanding design ideas and their motivation in the system.

Software
Architecture
Document

This is the set of diagrams that describes the logical design.
This includes software class diagrams, object interaction
diagrams, package diagrams, and so forth.

Design Model

This is a visualization of the domain concepts; it is similar to
a static information model of the domain entities.

Domain Model

CommentArtifact

Software Engineering
10

Object-oriented Analysis and Design

Planning the Next Iteration

 Organize requirements and iterations by risk, coverage,
and criticality.
Risk includes both technical complexity and other factors,

such as uncertainty of effort or usability.
Coverage implies that all major parts of the system are at

least touched on in early iterations perhaps a "wide and
shallow" implementation across many components.

Criticality refers to functions the client considers of high
business value.

Software Engineering
11

Object-oriented Analysis and Design

POS Risk List

……Low

Affects security subdomain.
…

Maintain Users
…

Medium

Scores high on all rankings.
Pervasive. Hard to add late.
…

Process Sale
Logging
…

High

CommentRequirement (Use
Case or Feature)Rank

Software Engineering
12

Object-oriented Analysis and Design

Chap 9
Domain Models

2019/4/14

3

Software Engineering
13

Object-oriented Analysis and Design

Introduction

 A domain model
 the most important and classic model in OO analysis.
be a visual representation of conceptual classes or real
situation objects in a domain.

Also called conceptual models, domain object models, and
analysis object models.

"focusing on explaining 'things' and products important to a
business domain“, such as POS related things.

 Guideline
Avoid a waterfall-mindset big-modeling effort to make a

thorough or "correct" domain model
 it won't ever be either, and such over-modeling efforts lead

to analysis paralysis, with little or no return on the
investment.

★

Software Engineering
14

Object-oriented Analysis and Design

Sample UP artifact influence

P ro c e s s S a le

1 . C u sto m e r a r r iv e s
. . .
2
3 . C a sh ie r e n te rs
i te m id e n t if ie r.
4

U s e C a s e T e x t

O p e ra t io n : e n te r I te m (…)

P o s t -co n d i tio n s :
- . . .

O p e ra t io n C o n tra c ts

S a le

d a te
. . .

S a le s
L in e I te m

q u a n t ity

1 . .*1 . . .

. . .

th e d o m a in o b je c ts ,
a tt r ib u te s , a n d a s s o cia tio n s
th a t u n d e rg o s ta te c h a n g e s

D o m a in M o d e l

U s e -C a s e M o d e l

D e s ig n M o d e l

: R e g is te r

e n te r I te m
(i te m ID , q u a n t ity)

: P ro d u c tC a ta lo g

s p e c = g e tP ro d u c tS p e c (ite m ID)

a d d L in e Ite m (s p e c , q u a n t ity)

: S a le

. . .

co n ce p tu a l
c la s se s in
th e
d o m a in
in s p ire th e
n a m e s o f
so m e
so ftw a re
c la s se s in
th e d e s ig n

co n ce p tu a l c la s se s –
te rm s , co n c e p ts
a tt r ib u te s , a ss o c ia t io n s

C a s h ie r : …
I te m ID : …
. ..

G lo s s a r y

e la b o ra t io n o f
so m e te rm s in
th e d o m a in
m o d e l

R e q u ire -
m e n ts

B u s in e s s
M o d e lin g

D e s ig n

S a m p le U P A r t ifa c t R e la t io n s h ip s

Software Engineering
15

Object-oriented Analysis and Design

POS Domain Model

Register

Item

Store

address
name

Sale

date
time

Payment

amount

Sales
LineItem

quantity

Stocked-in

*

Houses

1..*

Contained-in

1..*

Records-sale-of

0..1

Paid-by

1

1

1

1

1

1

0..1

1

Captured-on 

concept
or domain
object

association

attributes

Software Engineering
16

Object-oriented Analysis and Design

Domain Model 1

 It provides a conceptual perspective.
domain objects or conceptual classes
associations between conceptual classes
attributes of conceptual classes

 Following elements are not suitable in a domain model
Software artifacts, such as a window or a database, unless

the domain being modeled is of software concepts, such as a
model of graphical user interfaces.

Responsibilities or methods.

★★

Software Engineering
17

Object-oriented Analysis and Design

Domain Model 2

Sale

dateTime

visualization of a real-world concept in
the domain of interest

it is a not a picture of a software class

SalesDatabase software artifact; not part
of domain modelavo

id

software class; not part
of domain model

Sale

date
time

print()

avo
id

 A domain model does not show software artifacts or classes

 A domain model shows real-situation conceptual classes, not software
classes

★

Software Engineering
18

Object-oriented Analysis and Design

Domain Model 3

 A conceptual class is an idea, thing, or object.
Symbol words or images representing a conceptual class.
 Intension the definition of a conceptual class.
Extension the set of examples to which the conceptual class

applies

★

2019/4/14

4

Software Engineering
19

Object-oriented Analysis and Design

Domain Model 4

Sale

date
time

concept's symbol

"A sale represents the event
of a purchase transaction. It
has a date and time."

concept's intension

sale-1

sale-3
sale-2

sale-4

concept's extension

Software Engineering
20

Object-oriented Analysis and Design

Domain Model 5

 Lower representational gap with OO modeling.

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

Software Engineering
21

Object-oriented Analysis and Design

Guideline: Create a Domain Model

 Bounded by the current iteration requirements under
design
Find the conceptual classes (see a following guideline).
Draw them as classes in a UML class diagram.
Add the association ncessary to record relationships for

which there is a need to preserve some memory.
Add the attributes necessary to fulfill the information

requirements.

★★★

Software Engineering
22

Object-oriented Analysis and Design

Guideline: Find Conceptual Classes 1

 Reuse or modify existing models.
 Use a category list.
 Identify noun phrases from the case text

Register, Ledger
FlightManifest

where is the transaction recorded?
Guideline: Important.

Item
Flight, Seat,
Meal

product or service related to a transaction or transaction line
item
Guideline: Transactions are for something (a product or
service). Consider these next.

SalesLineItemtransaction line items
Guideline: Transactions often come with related line items, so
consider these next.

Sale, Payment
Reservation

business transactions
Guideline: These are critical (they involve money), so start
with transactions.

ExamplesConceptual Class Category

★★

Software Engineering
23

Object-oriented Analysis and Design

Guideline: Find Conceptual Classes 2

Store, Bin Board
Airplane

containers of things (physical or information)

Product Catalog
Flight Catalog

catalogs
Guideline: Descriptions are often in a catalog.

Product Description
Flight Description

descriptions of things
Guideline: See p. 147 for discussion.

Item, Register Board,
Piece, Die Airplane

physical objects
Guideline: This is especially relevant when creating
device-control software, or simulations.

Sale, Payment, Flightnoteworthy events, often with a time or place we need to
remember

Store
Airport, Plane, Seat

place of transaction; place of service

ExamplesConceptual Class Category

Software Engineering
24

Object-oriented Analysis and Design

Guideline: Find Conceptual Classes 3

DailyPriceChangeList
RepairSchedule

schedules, manuals, documents that are
regularly referred to in order to
perform work

Cash, Check, LineOfCredit
TicketCredit

financial instruments

Receipt, Ledger
MaintenanceLog

records of finance, work, contracts,
legal matters

Credit Authorization
System
Air Traffic Control

other collaborating systems

Item Square (in a Board)
Passenger

things in a container

ExamplesConceptual Class Category

2019/4/14

5

Software Engineering
25

Object-oriented Analysis and Design

Guideline: Find Conceptual Classes 4

Conceptual Class Category Examples

Physical or tangible object POST, Airplane

Roles of people Cashier, Pilot

Abstract noun concepts

Organizations

Hunger, Acrophobia

Sales Department

Events Sale, Meeting, Flight

Process SellingAProduct, Booking

Rules and policies RefundPolicy

Software Engineering
26

Object-oriented Analysis and Design

Find Conceptual Classes: POS

 A concept is an idea or notion that we apply to the things.
 Intension: the definition of concept, e.g. the Customer may

be a person or organization that purchases goods or
services

Extension: the set of all objects to which the concept
applies, e.g. the Customer may be “ John”, Tom”

<<tangible object>>
POSTerminal

<<thing in container>>
Item

<<transaction line items>>
SalesLineItem

<<role of people>>
Cashier

<<place>>
Store

<<descritpions of things>>
ProductSpec

<<catalog>>
ProductCatalog

<<roles of people>>
Customer

<<transaction>>
Payment

<<event or transactions>>
Sale

Software Engineering
27

Object-oriented Analysis and Design

Guideline: Find Conceptual Classes 5

 Identify noun phrases.
 Identify the nouns and noun phrases in textual descriptions

of a domain, and consider them as candidate conceptual
classes or attributes

Some of these noun phrases may refer to conceptual classes
that are ignored in this iteration (e.g., "Accounting" and
"commissions"), and some may be simply attributes of
conceptual classes.

A weakness of this approach is the imprecision of natural
language; different noun phrases may represent the same
conceptual class or attribute, among other ambiguities.

★★★

Software Engineering
28

Object-oriented Analysis and Design

Find Conceptual Classes: POS 1

 Main Success Scenario (or Basic Flow):
1.Customer arrives at a POS checkout with goods and/or

services to purchase.
2.Cashier starts a new sale.
3.Cashier enters item identifier.
4.System records sale line item and presents item description,

price, and running total. Price calculated from a set of price
rules.

Cashier repeats steps 2-3 until indicates done.
5.System presents total with taxes calculated.
6.Cashier tells Customer the total, and asks for payment.
7.Customer pays and System handles payment.
8.System logs the completed sale and sends sale and payment

information to the external Accounting (for accounting and
commissions) and Inventory systems (to update inventory).

Software Engineering
29

Object-oriented Analysis and Design

Find Conceptual Classes: POS 2

9.System presents receipt.
10.Customer leaves with receipt and goods (if any).

 Extensions (or Alternative Flows):
 . . .
7a. Paying by cash:
1.Cashier enters the cash amount tendered.
2.System presents the balance due, and releases the cash

drawer.
3.Cashier deposits cash tendered and returns balance in cash to

Customer.
4.System records the cash payment.

Software Engineering
30

Object-oriented Analysis and Design

Find Conceptual Classes: POS 3

 For iteration-1, the basic cash-only scenario of Process
Sale.
Sale, Cashier, Cash, Payment,
Customer, Sales Line Item,
Store, Item, Product Description,
Register, Product Catalog, Ledger.

2019/4/14

6

Software Engineering
31

Object-oriented Analysis and Design

Guideline:
Agile Modeling Maintain the Model in a Tool

 Perfection is not the goal of Agile, and agile models are
usually discarded shortly after creation.
From this viewpoint, there is no motivation to maintain or

update the model.

 If someone wants the model maintained and updated
with new discoveries
do the drawing with a UML tool.

Software Engineering
32

Object-oriented Analysis and Design

Guideline:
Report Objects Include 'Receipt' in the Model

 Receipt is a noteworthy term in the POS domain. But perhaps it's
only a report of a sale and payment, and duplicate information. Two
factors to consider
Exclude it: Showing a report of other information in a domain

model is not useful since all its information is derived or
duplicated from other sources.

 Include it: it has a special role in terms of the business rules: It
confers the right to the bearer of the receipt to return bought
items.

 Since item returns are not being considered in this iteration,
Receipt will be excluded.
During the iteration that tackles the Handle Returns use case, we

would be justified to include it.

★★

Software Engineering
33

Object-oriented Analysis and Design

Guideline:
Think Like a Mapmaker; Use Domain Terms

 Make a domain model in the spirit of how a cartographer
or mapmaker works:
Use the existing names in the territory. For example, if

developing a model for a library, name the customer a
"Borrower" the terms used by the library staff.

Exclude irrelevant or out-of-scope features.
Do not add things that are not there.

Software Engineering
34

Object-oriented Analysis and Design

Guideline:
How to Model the Unreal World

 It requires a high degree of abstraction, and listening
carefully to the core vocabulary and concepts that
domain experts use.

Software Engineering
35

Object-oriented Analysis and Design

Guideline:
A Common Mistake with Attributes vs. Classes

 If we do not think of some conceptual class X as a
number or text in the real world, X is probably a
conceptual class, not an attribute.
 In the real world, a store is not considered a number or

text, the term suggests a legal entity, an organization, and
something that occupies space. Therefore, Store should be
a conceptual class.

Sale Store
phoneNumber

Sale
Store

★★

Software Engineering
36

Object-oriented Analysis and Design

Guideline:
When to Model with 'Description' Classes

 A description class contains information that describes something else.
For example, a ProductDescription that records the price, picture, and
text description of an Item.
 Problems: if implemented in software similar to the domain

model, it has duplicate data (space-inefficient, and error-prone).
Because the description, price, and itemID are duplicated for every
Item instance of the same product

A particular Item may have a serial number; it represents a
physical instance. A ProductDescription wouldn't have a serial
number

Item
serialNumber

Item
description
price
serialNumber
itemID

productDescription
description
price
itemID

1 *

★★

2019/4/14

7

Software Engineering
37

Object-oriented Analysis and Design

Association 1

 Association
a relationship between classes (instances of those classes) that

indicates some meaningful and interesting connection.
 Guideline: When to Show an Association?

Associations imply knowledge of a relationship that needs to be
preserved for some duration.

 Guideline: Avoid Adding Many Associations
Many lines on the diagram will obscure it with "visual noise."

 Perspectives: Will the Associations Be Implemented In
Software?
During domain modeling, an association is not data flows,

database foreign key relationships, instance variables, or object
connections in software solution.

 it is meaningful in a purely conceptual perspective in the real
domain.

★

Software Engineering
38

Object-oriented Analysis and Design

Association 2

 Guideline
Name an association based on a ClassName-VerbPhrase-

ClassName format where the verb phrase creates a sequence
that is readable and meaningful.

Association names should start with a capital letter, since an
association represents a classifier of links between instances;

e.g. Sale Paid-by CashPayment: bad example (doesn't enhance
meaning): Sale Uses CashPayment

e.g. Player Is-on Square: bad example (doesn't enhance
meaning): Player Has Square

 Applying UML: Roles
Each end of an association is called a role. Roles may optionally

have multiplicity expression, name, navigability.

★

Software Engineering
39

Object-oriented Analysis and Design

Association 3

 Applying UML: Multiplicity
Multiplicity defines how many instances of a class A can be

associated with one instance of a class B

ItemStore Stocks

*

multiplicity of the role

1

zero or more;
"many"

one or more

one to 40

exactly 5

T

T

T

T

*

1..*

1..40

5

T
3, 5, 8

exactly 3, 5, or 8

Software Engineering
40

Object-oriented Analysis and Design

Association 4

 Applying UML: Multiple Associations Between Two Classes

Flight Airport

Flies-to

Flies-from

*

* 1

1

 Guideline: Find Associations with a Common Associations List

CustomerPayment
PassengerTicket

A is a role related to a transaction B

ItemSalesLineItem (or
Sale), FlightReservation

A is a product or service for a transaction (or line item) B

SalesLineItemSaleA is a line item of a transaction B

CashPaymentSale
CancellationReservation

A is a transaction related to another transaction B

ExamplesCategory

Software Engineering
41

Object-oriented Analysis and Design

Association 5

SalesLineItemSalesLineItem, SquareSquare,
CityCity

A is next to B

CashierRegister, PlayerPiece, PilotAirplaneA uses or manages or owns B

DepartmentStore, MaintenanceAirlineA is an organizational subunit of B

CashierStore, PlayerMonopolyGame,
PilotAirline

A is a member of B

SaleRegister, PieceSquare,
ReservationFlightManifest

A is known/logged/recorded/
reported/captured in B

ProductDescriptionItem,
FlightDescriptionFlight

A is a description for B

RegisterStore, ItemShelf, SquareBoard,
PassengerAirplane

A is physically or logically
contained in/on B

DrawerRegister, SquareBoard, SeatAirplaneA is a physical or logical part of B

ExamplesCategory

Software Engineering
42

Object-oriented Analysis and Design

Cashier

Name
CurrentPOST

Not a simple attribute

Cashier

Name
CurrentPOST

POST

Number
1

Uses

1

Relate with Association

2019/4/14

8

Software Engineering
43

Object-oriented Analysis and Design

Payment

amount:Number

Useable, but not
flexible or robust

*

Has-amount

1

Payment Quantity

amount:Number

Unit

* 1

Is-in

Payment

amount:Quantity

Quantity are pure data
value, so suitable be show
in attribute section

Modeling Quantities

Software Engineering
44

Object-oriented Analysis and Design

POS Partial Domain Model

Sales LineItem

quantity

Sale

date
time

Payment
amount

Store
address
name

Item

POST

Records-sale-on

Stocks

Houses

Captured-on

Contained-in

Paid-by

1

1 1..*

1

0..1

1
1

1

1
1..*

Customer
Cashier

Manager

Product Catalog Product
Description

1

1 Is-for Initiated-by

Logs-
completed

Described-byRecords-
sale-of

Contains

Describes

1

1

0..1 *

1
1

11

1
1..*

1
1

*

**

1Used-by

Started-by

1 *

Ledger

1 1

★★★

Software Engineering
45

Object-oriented Analysis and Design

Attributes 1

 An attribute is a logical data value of an object.
 Guideline: When to Show Attributes?

 Include attributes that the requirements (e.g., use cases) suggest or
imply a need to remember information.

 e.g., a receipt (which reports the information of a sale) in the
Process Sale use case normally includes a date and time, the store
name and address, and the cashier ID,

Sale

dateTime
/ total : Money

attributes

derived
attribute

★

Software Engineering
46

Object-oriented Analysis and Design

Attributes 2

 Guideline: Where to Record Attribute Requirements?
 to use a tool that integrates UML models with a data dictionary;

then all attributes will automatically show up as dictionary
elements.

 Derived Attributes
The total attribute in the Sale can be calculated or derived from the

information in the SalesLineItems.

Sale

- dateTime : Date
- / total : Money

Private visibility
attributes

Math

+ pi : Real = 3.14 {readOnly}

Public visibility readonly
attribute with initialization

Person

firstName
middleName : [0..1]
lastName

Optional value

Software Engineering
47

Object-oriented Analysis and Design

Attributes 3

 Guideline: Focus on Data Type Attributes in the Domain
Model.
most attribute types should be primitive data types, such as numbers

and booleans.

Cashier

name
currentRegister

Cashier

name

Register

number

Uses

Worse

Better

not a "data type" attribute

1 1

Software Engineering
48

Object-oriented Analysis and Design

Attributes 4

 Guideline: Don't show complex concepts as attributes; use
associations

Flight

Flight

destination
Worse

Better
Flies-to Airport1 1

destination is a complex
concept

2019/4/14

9

Software Engineering
49

Object-oriented Analysis and Design

Attributes 5

 Guideline: Represent what may initially be considered a
number or string as a new data type class in the domain
model if:
 It is composed of separate sections: phone number, name of person
There are operations associated with it, such as parsing or validation.
 social security number

 It has other attributes.
 promotional price could have a start (effective) date and end date

 It is a quantity with a unit.
 payment amount has a unit of currency

 It is an abstraction of one or more types with some of these qualities.
 item identifier in the sales domain is a generalization of types such as

Universal Product Code (UPC) and European Article Number (EAN)

Software Engineering
50

Object-oriented Analysis and Design

Attributes 6

 Applying UML: Two ways to indicate a data type property of
an object.

OK

OK

Product
Description

Product
Description

itemId : ItemID

1
Store

Store

address : Address

11 1

ItemID

id
manufacturerCode
countryCode

Address

street1
street2
cityName
...

Software Engineering
51

Object-oriented Analysis and Design

Attributes 7

Guideline: No Attributes Representing Foreign Keys.

Cashier

name
currentRegisterNumber

Cashier

name

Register

number

Works-on

Worse

Better

a "simple" attribute, but being
used as a foreign key to relate to
another object

1 1

Software Engineering
52

Object-oriented Analysis and Design

Attributes 8

 Guideline: Modeling Quantities and Units.
 Most numeric quantities should not be represented as plain numbers.
 To represent Quantity as a distinct class, with an associated Unit.
 To show Quantity specializations. Money is a kind of quantity whose units

are currencies. Weight is a quantity with units such as kilograms or pounds.

Payment

amount : Number

Payment Quantity

amount : Number

Unit

...

Payment

amount : Quantity

Has-amount
1*

Is-in
1*

not useful

quantities are pure data
values, so are suitable to
show in attribute section better

Payment

amount : Money

variation: Money is a
specialized Quantity whose
unit is a currency

Software Engineering
53

Object-oriented Analysis and Design

POS Partial Domain Model

Register

id

ItemStore

name
address

Sale

dateTime
/ total

CashPayment

amountTendered

Sales
LineItem

quantity

Cashier

id

Customer

Product
Catalog

Product
Description

itemID
description
price

Stocks

*

Houses

1..*

Used-by

*

Contains

1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-
completed

*

 Works-on

1

1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-
accounts-

for

1

1

Software Engineering
54

Object-oriented Analysis and Design

案例与实践

牧师与魔鬼

2019/4/14

10

Software Engineering
55

Object-oriented Analysis and Design

Iterative and Evolutionary Domain Modeling

rsData Model

sSW Architecture Document

rsDesign ModelDesign

rsGlossary

rsSupplementary Specification

rsVision

rsUse-Case Model (SSDs)Requirements

sDomain ModelBusiness
Modeling

T1..T2C1..CnE1..EnI1Iteration

Trans.Const.Elab.Incep.ArtifactDiscipline

