
1

Software Engineering
1

Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis

and Design
and Iterative Development

Part II Inception

Software Engineering
2

Object-oriented Analysis and Design

Chapters

4. Inception is not the requirement phase
5. Evolutionary requirement
6. Use cases
7. Other requirements

Software Engineering
3

Object-oriented Analysis and Design

Chap 6
Use Cases

Software Engineering
4

Object-oriented Analysis and Design

Actors(参与者)

 Actor: external entity interacts (behavior) with system, such as
a person (identified by role), computer system, or organization;
for example, a cashier.

 Three kind of Actors
Primary actor has user goals fulfilled through using services. (e.g.,

the cashier). Find user goals to drive the use cases.
 Supporting actor provides a service (e.g., the automated payment

authorization service is an example). Often a computer system, but
could be an organization or person. The purpose is to clarify
external interfaces and protocols.

Offstage actor has an interest in the behavior of the use case, but is
not primary or supporting (e.g., a government tax agency).

 最特殊的参与者

系统时钟,例如：schedule

★★

Software Engineering
5

Object-oriented Analysis and Design

识别Actor练习

“牧师与魔鬼”小游戏
 玩家？时钟？开发人员？

“神庙逃亡”游戏
 玩家？时钟？ Facebook？

 小明打算制作一款“中大课程表”的手机应用。它

从教务系统获取学生的选课信息和课程安排。教师
用它可以给学生和班委推送通知，学生查看课程表
，了解上课时间和教室安排；设置课前提醒等。
 ？

Software Engineering
6

Object-oriented Analysis and Design

Use Case(用例) 1

 Use case
 is a collection of related success and failure scenarios that

describe an actor using a system to support a goal.
be text documents, not diagrams
Use case modeling is primarily an act of writing text, not

drawing diagrams.
There is nothing object-oriented about use cases;
Use cases are a key requirements input to classic OOA/D.
be functional or behavioral requirements that indicate what the

system will do. In terms of the FURPS+ requirements types,
they emphasize the "F", but can also be used for other types.

★

2

Software Engineering
7

Object-oriented Analysis and Design

Use Case 2

 The usage of use case
Decide and describe the functional requirements of the system
Bring agreement between the customer and software

developer
Give a clear and consistent description of what the system

should do.
Provide a basis for performing tests that verify the system

delivers the functionality stated.
Trace the functional requirements into actual classes and

operations in the system.

Software Engineering
8

Object-oriented Analysis and Design

Scenarios(场景) 1

 Scenario
be a specific sequence of actions and

interactions（会话） between actors
and the system; it is also called a use
case instance.

 It is one particular story of using a
system, or one path through the use
case.

 for example, the scenario of
successfully purchasing items with
cash, or the scenario of failing to
purchase items because of a credit
payment denial.

I would like a
book of
stamps, please.

That will
be $7.80.

Here is $10.

Thanks. Here
are your stamps
and your
change.

Yes.

OK. Will
that be all?

Software Engineering
9

Object-oriented Analysis and Design

Use Case & Scenarios 2

 Scenario
A use case represents a collection of scenarios: primary,

plus zero or more alternates.
The primary scenario（主场景／基本流） corresponds to

the main system interactions, usually the ‘success’ scenario.
最常用，直接地实现用户目标的故事

Alternate scenarios（可选场景／备选流） correspond to
less frequent interactions and exceptions.
在实现用户目标过程中较少适用与意外故事

Software Engineering
10

Object-oriented Analysis and Design

Use Case 案例：打电话

 System under Design(SuD): 电话系统
 Goal：与被叫方通话
 Actor:

主叫方(primary)，被叫方
计费系统(supporting)
运营商

 Primary scenario:
拨号，系统建立连接，回呼叫音
系统连接完成，取消呼叫音
与被叫方通话
挂机，系统拆线

 Alternate scenario: 占线
 拨号，系统建立连接，回忙音
挂机，系统拆线

 Alternate scenario: 号码不存在
 。。。

Software Engineering
11

Object-oriented Analysis and Design

简单用例练习

小明打算制作一款“中大课程表”的手机应用。它从
教务系统获取学生的选课信息和课程安排。教师用它
可以给学生和班委推送通知，学生查看课程表，了解
上课时间和教室安排；设置课前提醒等。

请描述学生“设置课前提醒”的用例（Use Case）
 Goal：
 Actor：
 Primary scenario：
 List of alternate scenarios

Software Engineering
12

Object-oriented Analysis and Design

Use Case Modeling

 Use case model
Be the set of all written use cases; it is a model of the

black-box system's functionality and environment.
be not the only requirement artifact in the UP. There are

also the Supplementary Specification, Glossary, Vision,
and Business Rules.

may optionally include a UML use case diagram to show
the names of use cases and actors, and their relationships.
This gives a nice context diagram of a system and its
environment.

★

3

Software Engineering
13

Object-oriented Analysis and Design

Use case Diagrams

Buy
Items

Log In

Refund
Purchased

items

Cashier Customer

POST

System
boundary

Actor

Use case

Information
Flow

Software Engineering
14

Object-oriented Analysis and Design

简单用例建模练习

小明打算制作一款“中大课程表”的手机应用。它从
教务系统获取学生的选课信息和课程安排。教师用它
可以给学生和班委推送通知，学生查看课程表，了解
上课时间和教室安排；设置课前提醒等。

请描述用例图（Use Case Diagram）
Actors（包含时钟）：

System:
Actors（外部实体）：

Use Case named
 Actor – Use Cases

Software Engineering
15

Object-oriented Analysis and Design

Three Common Use Case Formats

 Brief (high level)
Terse one-paragraph summary, usually of the main success

scenario.
During early requirements analysis, to get a quick sense of subject

and scope. May take only a few minutes to create.
 Casual（简便格式）

 Informal paragraph format. Multiple paragraphs that cover various
scenarios.

When? As above.
 Fully

 dressed All steps and variations are written in detail, and there are
supporting sections, such as preconditions and success guarantees.

After many use cases have been identified and written in a brief
format, then during the first requirements workshop a few (such
as 10%) of the architecturally significant and high-value use
cases are written in detail.

★

Software Engineering
16

Object-oriented Analysis and Design

Brief Use Case Example 1

 Use case: Buy Items
Actors: Customer, Cashier
Type: Primary
Description: A customer arrives at checkout with

items to purchase. The Cashier records the purchase items
and collects payment, On completion, the Customer leaves
with the items.

Software Engineering
17

Object-oriented Analysis and Design

Brief Use Case Example 2

 Use case: Handle Returns
Main success scenario
A customer arrives at a checkout with items to return. The

cashier uses the POS system to record each returned item …

Alternate Scenarios:
If the customer paid by credit, and the reimbursement

transaction to their credit account is rejected, inform the
customer and pay them with cash.
If the item identifier is not found in the system, notify the

Cashier and suggest manual entry of the identifier code
(perhaps it is corrupted).
If the system detects failure to communicate with the external

accounting system, …

Software Engineering
18

Object-oriented Analysis and Design

Casual Use Case

 Use case: Buy Items with Cash
 Actors: Customer (initiator), Cashier
 Purpose: Capture a sale and its cash payment
 Overview:

A customer arrives at checkout with items to purchase.
The Cashier records the purchase items and collects

payment,
On completion, the Customer leaves with the items.

 Type: primary and essential.
 Cross Reference: Functions:R1.1, R1.2, R1.3, R1.7, R1.9

4

Software Engineering
19

Object-oriented Analysis and Design

Use Case Scenario: Buy Items 1

1. When a Customer arrives at the POS Terminal checkout
with items to purchase.

2. The Cashier records each items. If there is more than one
of an item, the Cashier can enter the quantity as well.

3. The system determines the item price and adds the item
information to running sales transaction. The description
and price of the current item are presented.

4. On completion of item entry, the Cashier indicates to the
POS Terminal that item entry is complete.

5. The system calculates and presents the sale total.
6. The Cashier tells the Customer the total.

Software Engineering
20

Object-oriented Analysis and Design

Use Case Scenario: Buy Items 2

7. Customer choose payment type: If cash payment, see
section Pay by Cash. If credit payment, see section Pay
by Credit.

8. The system logs the complete sale.
9. The system updates inventory.
10. The system generates a receipt.
11. The Cashier gives the receipt to the Customer.
12. The Customer leaves with the items purchases.

Variation
2.1. If invalid item identifier entered, indicate error.
7.1. If Customer could not pay, cancel sales transaction.

Software Engineering
21

Object-oriented Analysis and Design

Use Case Scenario: Pay by Cash

1. The Customer gives a cash payment – the cash tendered possibly
greater than the sale total.

2. The Cashier records the tendered.
3. The system presents the balance due back to the Customer.
4. The Cashier deposits the cash received and extracts the balance

owing.
5. The Cashier gives the balance owing to the Customer.
Variation
1.1. If customer does not have sufficient cash, Cashier may cancel

sale or initiate another payment method.
4.1. If cash drawer does not contain sufficient cash to pay balance,

Cashier requests additional cash from supervisor or asks
Customer for different payment amount or method.

Software Engineering
22

Object-oriented Analysis and Design

Use Case Scenario: Pay by Credit

1. The Customer communicates their credit information for
the credit payment.

2. The system generates a credit payment request and send it
to an external Credit Authorization Service (CAS).

3. Credit Authorization Service authorizes the payment.
4. The system receives a credit approval reply from the CAS.
5. The system posts (records) the credit payment and approval

reply information to the Account Receivable system.
Variation
3.1. If credit request denied by CAS, Cashier suggests

different payment method.

Software Engineering
23

Object-oriented Analysis and Design

Fully Use Case Template

Such as open issues.Miscellaneous

Influences investigation, testing, and timing of
implementation.

Frequency of Occurrence

Varying I/O methods and data formats.Technology and Data Variations List

Related non-functional requirements.Special Requirements

Alternate scenarios of success or failure.Extensions

A typical, unconditional happy path scenario of success.Main Success Scenario

What must be true on successful completion, and worth
telling the reader.

Success Guarantee

What must be true on start, and worth telling the reader?Preconditions

Who cares about this use case, and what do they want?Stakeholders and Interests

Calls on the system to deliver its services.Primary Actor

"user-goal" or "subfunction"Level

The system under design.Scope

Start with a verb.Use Case Name

CommentUse Case Section

★

Software Engineering
24

Object-oriented Analysis and Design

Fully Use Case Example 1

 Scope: NextGen POS application
 Level: user goal
 Primary Actor: Cashier
 Stakeholders and Interests:

Cashier: Wants accurate, fast entry, and no payment errors, as cash
drawer shortages are deducted from his/her salary.

 Salesperson: Wants sales commissions updated.
Customer: Wants purchase and fast service with minimal effort.

Wants easily visible display of entered items and prices. Wants proof
of purchase to support returns.

Company: Wants to accurately record transactions and satisfy
customer interests. Wants to ensure that Payment Authorization
Service payment receivables are recorded. Wants some fault tolerance
to allow sales capture even if server components (e.g., remote credit
validation) are unavailable. Wants automatic and fast update of
accounting and inventory.

5

Software Engineering
25

Object-oriented Analysis and Design

Fully Use Case Example 2

Manager: Wants to be able to quickly perform override
operations, and easily debug Cashier problems.

Government Tax Agencies: Want to collect tax from every
sale. May be multiple agencies, such as national, state, and
county.

Payment Authorization Service: Wants to receive digital
authorization requests in the correct format and protocol.
Wants to accurately account for their payables to the store.

 Preconditions: Cashier is identified and authenticated.
 Success Guarantee (or Postconditions): Sale is saved.

Tax is correctly calculated. Accounting and Inventory
are updated. Commissions recorded. Receipt is
generated. Payment authorization approvals are
recorded.

Software Engineering
26

Object-oriented Analysis and Design

Fully Use Case Example 3

 Main Success Scenario (or Basic Flow)
 1.Customer arrives at POS checkout with goods and/or services to

purchase.
 2.Cashier starts a new sale.
 3.Cashier enters item identifier.
 4.System records sale line item and presents item description, price,

and running total. Price calculated from a set of price rules.
 5.Cashier repeats steps 3-4 until indicates done.
 6.System presents total with taxes calculated.
 7.Cashier tells Customer the total, and asks for payment.
 8.Customer pays and System handles payment.
 9.System logs completed sale and sends sale and payment information

to the external Accounting system (for accounting and commissions)
and Inventory system (to update inventory).

 10.System presents receipt.
 11.Customer leaves with receipt and goods (if any).

Software Engineering
27

Object-oriented Analysis and Design

Fully Use Case Example 4

 Extensions (or Alternative Flows)
*a. At any time, Manager requests an override operation:
 1. System enters Manager-authorized mode.
 2. Manager or Cashier performs one Manager-mode operation. e.g., cash

balance change, resume a suspended sale on another register, void a sale,
etc.
 3. System reverts to Cashier-authorized mode.

*b. At any time, System fails: To support recovery and correct
accounting, ensure all transaction sensitive state and events can
be recovered from any step of the scenario.
 1. Cashier restarts System, logs in, and requests recovery of prior state.
 2. System reconstructs prior state.

 2a. System detects anomalies preventing recovery:
1.System signals error to the Cashier, records the error, and

enters a clean state.
2.Cashier starts a new sale.

Software Engineering
28

Object-oriented Analysis and Design

Fully Use Case Example 5

 Extensions (or Alternative Flows)
1a. Customer or Manager indicate to resume a suspended sale.
1.Cashier performs resume operation, and enters the ID to

retrieve the sale.
2.System displays the state of the resumed sale, with subtotal.

2a. Sale not found.
1.System signals error to the Cashier.
2.Cashier probably starts new sale and re-enters all

items.
3.Cashier continues with sale (probably entering more items or

handling payment).
2-4a. Customer tells Cashier they have a tax-exempt status (e.g.,

seniors, native peoples)
1.Cashier verifies, and then enters tax-exempt status code.
2.System records status (which it will use during tax

calculations)

Software Engineering
29

Object-oriented Analysis and Design

Fully Use Case Example 6

 Extensions (or Alternative Flows)
 3a. Invalid item ID (not found in system):
 1. System signals error and rejects entry.
 2. Cashier responds to the error:

 2a. There is a human-readable item ID (e.g., a numeric UPC):
1.Cashier manually enters the item ID.
2.System displays description and price.
2a. Invalid item ID: System signals error. Cashier tries alternate

method
 2b. There is no item ID, but there is a price on the tag:

1.Cashier asks Manager to perform an override operation.
2.Managers performs override.
3.Cashier indicates manual price entry, enters price, and requests

standard taxation for this amount (because there is no product
information, the tax engine can't otherwise deduce how to tax it)

 2c. Cashier performs Find Product Help to obtain true item ID and
price.

 2d. Otherwise, Cashier asks an employee for the true item ID or price,
and does either manual ID or manual price entry (see above).

Software Engineering
30

Object-oriented Analysis and Design

Fully Use Case Example 7

 Extensions (or Alternative Flows)
 3b. There are multiple of same item category and tracking unique item

identity not important (e.g., 5 packages of veggie-burgers):
1.Cashier can enter item category identifier and the quantity.

 3c. Item requires manual category and price entry (such as flowers or
cards with a price on them):
1.Cashier enters special manual category code, plus the price.

 3-6a: Customer asks Cashier to remove (i.e., void) an item from the
purchase: This is only legal if the item value is less than the void limit
for Cashiers, otherwise a Manager override is needed.
1.Cashier enters item identifier for removal from sale.
2.System removes item and displays updated running total.

2a. Item price exceeds void limit for Cashiers:
1.System signals error, and suggests Manager override.
2.Cashier requests Manager override, gets it, and repeats

operation.

6

Software Engineering
31

Object-oriented Analysis and Design

Fully Use Case Example 8

 Extensions (or Alternative Flows)
 3-6b. Customer tells Cashier to cancel sale:
1.Cashier cancels sale on System.

 3-6c. Cashier suspends the sale:
1.System records sale so that it is available for retrieval on any POS

register.
2.System presents a "suspend receipt" that includes the line items,

and a sale ID used to retrieve and resume the sale.
 4a. The system supplied item price is not wanted (e.g., Customer

complained about something and is offered a lower price):
1.Cashier requests approval from Manager.
2.Manager performs override operation.
3.Cashier enters manual override price.
4.System presents new price.

Software Engineering
32

Object-oriented Analysis and Design

Fully Use Case Example 9

 Extensions (or Alternative Flows)
 5a. System detects failure to communicate with external tax

calculation system service:
1.System restarts the service on the POS node, and continues.

1a. System detects that the service does not restart.
1.System signals error.
2.Cashier may manually calculate and enter the tax, or

cancel the sale.
 5b. Customer says they are eligible for a discount (e.g., employee,

preferred customer):
1.Cashier signals discount request.
2.Cashier enters Customer identification.
3.System presents discount total, based on discount rules.

Software Engineering
33

Object-oriented Analysis and Design

Fully Use Case Example 10

 Extensions (or Alternative Flows)
 5c. Customer says they have credit in their account, to apply to the sale:
 1.Cashier signals credit request.
 2.Cashier enters Customer identification.
 3.Systems applies credit up to price=0, and reduces remaining credit.

 6a. Customer says they intended to pay by cash but don't have enough cash:
 1.Cashier asks for alternate payment method.

 1a. Customer tells Cashier to cancel sale. Cashier cancels sale on
System.

 7a. Paying by cash:
 1.Cashier enters the cash amount tendered.
 2.System presents the balance due, and releases the cash drawer.
 3.Cashier deposits cash tendered and returns balance in cash to

Customer.
 4.System records the cash payment.

Software Engineering
34

Object-oriented Analysis and Design

Fully Use Case Example 11

 Extensions (or Alternative Flows)
 7b. Paying by credit:
1.Customer enters their credit account information.
2.System displays their payment for verification.
3.Cashier confirms.

3a. Cashier cancels payment step:
1.System reverts to "item entry" mode.

4.System sends payment authorization request to an external
Payment Authorization Service System, and requests payment
approval.
4a. System detects failure to collaborate with external system:

1.System signals error to Cashier.
2.Cashier asks Customer for alternate payment.

Software Engineering
35

Object-oriented Analysis and Design

Fully Use Case Example 12

 Extensions (or Alternative Flows)
 7b. Paying by credit:
5.System receives payment approval, signals approval to Cashier, and

releases cash drawer (to insert signed credit payment receipt).
 5a. System receives payment denial:

1.System signals denial to Cashier.
2.Cashier asks Customer for alternate payment.

 5b. Timeout waiting for response.
1.System signals timeout to Cashier.
2.Cashier may try again, or ask Customer for alternate payment.

6.System records the credit payment, which includes the payment
approval.
7.System presents credit payment signature input mechanism.
8.Cashier asks Customer for a credit payment signature. Customer enters

signature.
9.If signature on paper receipt, Cashier places receipt in cash drawer and

closes it.
Software Engineering

36

Object-oriented Analysis and Design

Fully Use Case Example 13

 Extensions (or Alternative Flows)
 7c. Paying by check…
 7d. Paying by debit…
 7e. Cashier cancels payment step:
 1.System reverts to "item entry" mode.

 7f. Customer presents coupons:
 1.Before handling payment, Cashier records each coupon and System reduces price

as appropriate. System records the used coupons for accounting reasons.
 1a. Coupon entered is not for any purchased item:

1.System signals error to Cashier.
 9a. There are product rebates:
 1.System presents the rebate forms and rebate receipts for each item with a rebate.

 9b. Customer requests gift receipt (no prices visible):
 1.Cashier requests gift receipt and System presents it.

 9c. Printer out of paper.
 1.If System can detect the fault, will signal the problem.
 2.Cashier replaces paper.
 3.Cashier requests another receipt.

7

Software Engineering
37

Object-oriented Analysis and Design

Fully Use Case Example 14

 Special Requirements
Touch screen UI on a large flat panel monitor. Text must be

visible from 1 meter.
Credit authorization response within 30 seconds 90% of the

time.
Somehow, we want robust recovery when access to remote

services such the inventory system is failing.
Language internationalization on the text displayed.
Pluggable business rules to be insertable at steps 3 and 7.
…

Software Engineering
38

Object-oriented Analysis and Design

Fully Use Case Example 15

 Technology and Data Variations List
*a. Manager override entered by swiping an override card

through a card reader, or entering an authorization code via the
keyboard.

3a. Item identifier entered by bar code laser scanner (if bar code
is present) or keyboard.

3b. Item identifier may be any UPC, EAN, JAN, or SKU coding
scheme.

7a. Credit account information entered by card reader or
keyboard.

7b. Credit payment signature captured on paper receipt. But
within two years, we predict many customers will want digital
signature capture.

Frequency of Occurrence: Could be nearly continuous.

Software Engineering
39

Object-oriented Analysis and Design

Fully Use Case Example 16

 Open Issues
What are the tax law variations?
Explore the remote service recovery issue.
What customization is needed for different businesses?
Must a cashier take their cash drawer when they log out?
Can the customer directly use the card reader, or does the

cashier have to do it?

Software Engineering
40

Object-oriented Analysis and Design

Two-Column Use Case Format 1

Actor Action System Response
1. This use case begin when a

Customer arrives at a POST
2. The Cashier records the

identifier from each item.
If there is more than one of
same item, the Cashier can
enter the quantity as well

3. Determines the item price and
adds the item information to
running sales transaction.
The description and price of
the current item are presented.

4. On completion of item entry, the
Cashier indicates to the POST
that item entry is complete.

5. Calculates and presents the
sale total

Software Engineering
41

Object-oriented Analysis and Design

6. The Cashier tell the Customer
the total.

7. The Customer gives a cash pay-
ment - the “cash tendered” - pos-
sibly greater than the sale total.

8. The Cashier records the cash
received amount.

9. Shows the balance due back to
the Customer.

10.The Cashier deposits the cash
received and extracts the balance
owing.
The Cashier gives the balance owing
and the printed receipt to the
Customer.

11. Logs the completed sale.
12. The Customer leaves with

items purchased

Alternative
Course: Line 2: Invalid identifier entered. Indicate error.

Line 9: Customer didn’t have enough cash.
Cancel sales transaction.

Two-Column Use Case Format 2

Software Engineering
42

Object-oriented Analysis and Design

Guideline: Write in an Essential UI-Free Style

 During a requirements workshop, the cashier may say one of his goals is
to "log in." The cashier was probably thinking of a GUI, dialog box, user
ID, and password.

 During early requirements work, "keep the user interface out, focus on
intent."

 Concrete Style Avoid, During Early Requirements Work.
Concrete style, user interface decisions are embedded in the use

case text.
Administrator enters ID and password in dialog box (see Picture 3).
 System authenticates Administrator.
 System displays the "edit users" window (see Picture 4).
…

Essential Style: Assume that the Manage Users use case requires
identification and authentication:
…
Administrator identifies self.
 System authenticates identity.

★

8

Software Engineering
43

Object-oriented Analysis and Design

Guideline: Write Terse Use Cases

 Write terse use cases. Delete "noise" words.
Even small changes add up, such as "System

authenticates…" rather than "The System authenticates…"

★

Software Engineering
44

Object-oriented Analysis and Design

Guideline: Write Black-Box Use Cases

 Black-box use cases
 do not describe the internal workings of the system, its components,

or design.
 By defining system responsibilities with black-box use cases, one can

specify what the system must do (the behavior or functional
requirements) without deciding how it will do it (the design).
 the definition of "analysis" versus "design" is "what" versus "how."

Black-box style Not

The system records the sale. The system writes the sale to a database. …or (even worse):
The system generates a SQL INSERT statement for the

sale…

★

Software Engineering
45

Object-oriented Analysis and Design

Guideline:
Take an Actor and Actor-Goal Perspective

 To stresses two attitudes during requirements analysis:
Write requirements focusing on the users or actors of a

system, asking about their goals and typical situations.
Focus on understanding what the actor considers a

valuable result.

★

Software Engineering
46

Object-oriented Analysis and Design

Guideline: How to Find Use Cases 1

 Use cases are defined to satisfy the goals of the primary
actors. The basic procedure is:
1. Choose the system boundary.
Is it just a software application, the hardware and application

as a unit, that plus a person using it, or an entire organization?

2. Identify the primary actors
 that have goals fulfilled through using services of the system.

3. Identify the goals for each primary actor.
4. Define use cases that satisfy user goals; name them

according to their goal.
user-goal level use cases will be one-to-one with user goals,

but there is at least one exception, as will be examined.

★★ ★

Software Engineering
47

Object-oriented Analysis and Design

案例：回顾

中大课程表

1.确定系统边界

学生

教务，教师

<<external system>>
教务系统

（学生选课信息）

2. 参
与者

查课程表

设置提醒

推送信息

3. 满足主要参与

者目标的系统服
务

4. 建立关联

Software Engineering
48

Object-oriented Analysis and Design

Guideline: How to Find Use Cases 2

 Questions to Help Find Actors and Goals?
Who starts and stops the system?
Who does system administration?
Who does user and security management?
 Is "time" an actor because the system does something in response

to a time event?
 Is there a monitoring process that restarts the system if it fails?
Who evaluates system activity or performance?
How are software updates handled? Push or pull update?
Who evaluates logs? Are they remotely retrieved?
 In addition to human primary actors, are there any external

software or robotic systems that call upon services of the system?
Who gets notified when there are errors or failures?

9

Software Engineering
49

Object-oriented Analysis and Design

Guideline: How to Find Use Cases 4

 Case study: Primary actors and goals at different system
boundaries

Goal: Process sales

Cashier

Customer

POS System

Checkout Service

Goal: Buy items

Enterprise Selling Things

Sales Tax
Agency

Goal: Collect
taxes on sales Sales Activity

System

Goal: Analyze sales
and performance data

Software Engineering
50

Object-oriented Analysis and Design

Guideline: How to Find Use Cases 3

 Organize the Actors and Goals
Case study

Cashier process sales
process rentals
handle returns
cash in
cash out

System
Administrator

add users
modify users
delete users
manage security
manage system tables
…

Manager start up
shut down
…

Sales Activity
System

analyze sales and
performance data

★

Software Engineering
51

Object-oriented Analysis and Design

Find Actors and Goals: Event Analysis

 Event Based
to identify external events that a system must respond to.
. What are they, where from, and why? Often, a group of

events belong to the same use case.
Relate the events to actors and use cases.

External Event From Actor Goal/Use Case

enter sale line item Cashier process a sale

enter payment Cashier or Customer process a sale

★

Software Engineering
52

Object-oriented Analysis and Design

Guideline:
What Tests Can Help Find Useful Use Cases (1)

 "What is a useful level to express use cases for
application requirements analysis?" rules of thumb,
including:
The Boss Test
Your boss asks, "What have you been doing all day?"

You reply: "Logging in!" Is your boss happy?
If not, the use case fails the Boss Test, which implies

it is not strongly related to achieving results of
measurable value.

The EBP Test
The Size Test

★★

Software Engineering
53

Object-oriented Analysis and Design

Guideline:
What Tests Can Help Find Useful Use Cases (2)

The EBP Test
Elementary Business Process (EBP) is a term from the

business process engineering field
EBP is similar to the term user task in usability

engineering
A task performed by one person in one place at one time, in

response to a business event, which adds measurable
business value and leaves the data in a consistent state,
e.g., Approve Credit or Price Order

The Size Test
A common mistake in use case modeling is to define just a

single step within a series of related steps as a use case by
itself, such as defining a use case called Enter an Item ID.

Software Engineering
54

Object-oriented Analysis and Design

Guideline:
What Tests Can Help Find Useful Use Cases (3)

 Example: Applying the Tests
Negotiate a Supplier Contract
Much broader and longer than an EBP. Could be

modeled as a business use case, rather than a system
use case.

Handle Returns
OK with the boss. Seems like an EBP. Size is good.

Log In
Boss not happy if this is all you do all day!

Move Piece on Game Board
Single step, fails the size test.

10

Software Engineering
55

Object-oriented Analysis and Design

Motivation: Other Benefits of Use Cases

 To replace detailed, low-level function lists with use cases
 High-Level System Feature Lists Are Acceptable

a terse, high-level feature list, called system features, added
to a Vision document can usefully summarize system
functionality.

Summary of System Features, for POS.
sales capture
payment authorization (credit, debit, check)
system administration for users, security, code and

constants tables, and so on
…

Software Engineering
56

Object-oriented Analysis and Design

Applying UML: Use Case Diagrams 1

 Draw a simple use case diagram in conjunction with an actor-
goal list.

 Use case diagram is an excellent picture of the system context;
 it makes a good context diagram,
showing the boundary of a system, what lies outside of it, and

how it gets used.
 It serves as a communication tool that summarizes the behavior

of a system and its actors.

 Guideline: Downplay Diagramming, Keep it Short and
Simple.

 If an organization is spending many hours/days working on a
use case diagram and discussing use case relationships, rather
than focusing on writing text, effort has been misplaced.

Software Engineering
57

Object-oriented Analysis and Design

Applying UML: Use Case Diagrams 2

NextGen POS

Manage Users

. . .

Cashier

System
Administrator

actor

use case

communicationsystem boundary

Payment
Authorization

Service

玜ctor?
Tax Calculator

玜ctor?
Accounting

System

alternate
notation for
a computer
system actor

玜ctor?
HR System

Cash In

玜ctor?
Sales Activity

System

Manage Security

Analyze Activity

Customer

Manager

Process Sale

Handle Returns

★★ ★

Software Engineering
58

Object-oriented Analysis and Design

Applying UML: Use Case Diagrams 3

NextGen POS

Cashier

Customer

Handle Cash
Payment

Process Rental

Process Sale

Handle Check
Payment

Handle Returns

玦nclude? 玦nclude?

玦nclude?

玦nclude? 玦nclude?
玦nclude?

玜ctor?
Accounting

System

玜ctor?
Credit

Authorization
Service

Manage Users

...

UML notation:
the base use
case points to
the included use
case

Handle Credit
Payment

★★ ★

Software Engineering
59

Object-oriented Analysis and Design

Applying UML: Use Case Diagrams 4

Process Sale

Extension Points:
Payment

VIP Customer

玡xtend?
Payment, if Customer

presents a gift certificate

UML notation:
1. The extending use case
points to the base use case.

2. The condition and
extension point can be
shown on the line.

Handle Gift Certificate
Payment

Software Engineering
60

Object-oriented Analysis and Design

案例研究：自助存包机1

Automated bar-code based lockers system for supermarket

11

Software Engineering
61

Object-oriented Analysis and Design

案例研究：自助存包机2

系统边界
存包机？柜子？锁？条码扫描机？联网控制软件？

主要参与者
用户？管理员？联网控制软件？开门条码？

主要参与者的目标
存包？取包？开门？关门？检查箱柜？

用例

存取常见的意外场景？

用户存包用例的前置条件？后置条件？

存包过程中用户关注哪些状态或事物？

用例图？

Software Engineering
62

Object-oriented Analysis and Design

案例研究：淘宝 vs. 京东

某团队计划“山寨”购物网站。他们列出了客户使
用淘宝和京东的部分行为（事件）：

购买商品、查找商品、查看商品明细、咨询销售人员
、加入购物车、管理购物车、立即购买、生成订单、
管理收件人列表、在线付款、⋯⋯

请使用前面的判断用例的方法，回答：
上述哪些是淘宝／京东客户的user-goal级别的用例？

上述哪些是子用例级别的用例？

如何从用例或用例描述中体现b2c与c2c的差异？请举
例说明

Software Engineering
63

Object-oriented Analysis and Design

Work With Use Cases in Iterative Methods

 UP encourages use-case driven development.
 Functional requirements are primarily recorded in use cases
 Use cases are an important part of iterative planning. The work

of an iteration is in part defined by choosing some use case
scenarios, or entire use cases. And use cases are a key input to
estimation.

 Use-case realizations drive the design. The team designs
collaborating objects and subsystems in order to perform or
realize the use cases.

 Use cases often influence the organization of user manuals.
 Functional or system testing corresponds to the scenarios of use

cases.
 UI "wizards" or shortcuts may be created for the most common

scenarios of important use cases to ease common tasks.

Software Engineering
64

Object-oriented Analysis and Design

Chap 6X1
用例可视化－UML活动图

Software Engineering
65

Object-oriented Analysis and Design

使用UML活动图

 UML活动图的应用场合

描述某一用例中执行的步骤，使复杂的多场景用例以
及与Include或extend用例的关系可视化。

描述用户和系统之间的业务流程协作。

描述软件中的方法、函数或操作。（描述算法）

 UML活动图的必要性
需求调查现场，与用户高效沟通

描述用例实现过程。项目早期，编写完整Use Case文
本太耗费时间，你可以使用活动图将重要的场景描述
出来

用业务流程图来识别用例。复杂业务活动包含很多用
例，他们与过程关系用户难以理解。

Software Engineering
66

Object-oriented Analysis and Design

UML活动图基本符号

符号解释

1 重要操作／子用例

2 控制流

3 起始节点：必须，唯一

4 中止节点：必须

5 决策节点

6 限定条件：［条件］

7 归并节点

8 注释：前置／后置条件；
支持系统；用户感兴趣
的各种需求；问题

更多细节：
UML软件设计图绘制准则（微软）

★★ ★

12

Software Engineering
67

Object-oriented Analysis and Design

ATM Withdraw Activities Diagram

Software Engineering
68

Object-oriented Analysis and Design

UML活动图用于业务建模

①参与者／设计的系统
②责职／用例／子用例 注意：业务建模一般不要细到操作级别。

① ②

③④

③并行，Fork操作
④泳道，表示该泳道上的活动都是其上参与者的责职

Software Engineering
69

Object-oriented Analysis and Design

Evolve Use Cases Across the Iterations 1

Discipline Artifact Incep
1 week

Elab 1
4 weeks

Require
ments

Use-
Case
Model

2-day requirements workshop.
Most use cases identified by name,
and summarized in a short
paragraph. Pick 10% from the
high-level list to analyze and write
in detail. This 10% will be the
most architecturally important,
risky, and high-business value.

Near the end of this
iteration, host a 2-day
requirements workshop.
Obtain insight and
feedback from the
implementation work,
then complete 30% of
the use cases in detail.

Software Engineering
70

Object-oriented Analysis and Design

Evolve Use Cases Across the Iterations 2

Elab 2
4 weeks

Elab 3
3 weeks

Elab 4

3 weeks

Near the end of this iteration,
host a 2-day requirements
workshop. Obtain insight and
feedback from the
implementation work, then
complete 50% of the use cases
in detail.

Repeat,
complete 70% of
all use cases in
detail.

Repeat with the goal of
8090% of the use cases
clarified and written in
detail.

Only a small portion of these
have been built in
elaboration; the remainder
are done in construction.

Software Engineering
71

Object-oriented Analysis and Design

Evolve Use Cases Across the Iterations 3

Discipline Artifact Incep
1 week

Elab 1
4 weeks

Elab 2
4 weeks

Elab 3
3 weeks

Elab 4
3 weeks

Design Design
Model

none Design for a
small set of
high-risk
architecturall
y significant
requirements.

repeat repeat Repeat. The high
risk and
architecturally
significant aspects
should now be
stabilized.

Implemen
tation

Implem
entation
Model
(code,
etc.)

none Implement
these.

Repeat.
5% of
the final
system
is built.

Repeat.
10% of
the final
system
is built.

Repeat. 15% of
the final system is
built.

Software Engineering
72

Object-oriented Analysis and Design

Evolve Use Cases Across the Iterations 4

Discipline Artifact Incep
1 week

Elab 1
4 weeks

Elab 2
4 weeks

Elab 3
3 weeks

Elab 4
3 weeks

Project
Manage
ment

SW
Develo
pment
Plan

Very
vague
estima
te of
total
effort.

Estimate
starts to
take shape.

a little
better
…

a little
better
…

Overall project
duration, major
milestones,
effort, and cost
estimates can
now be
rationally
committed to.

13

Software Engineering
73

Object-oriented Analysis and Design

Process and setting context for writing use cases

January February

Use Case: Capture a Sale
. . .
Main Success Scenario:
1. ...
2. ...
3. ...
Extensions:

Use Case: Handle Returns
. . .
Main Success Scenario:
1. ...
2. ...
3. ...
Extensions:

When
Once during inception. Short; do not try to
define or polish all requirements.

Several times during elaboration iterations.

Where
At a requirements workshop.

Who
Many, including end users and developers, will play
the role of requirements specifier, helping to write
use cases.

Led by system analyst who is responsible for
requirements definition.

How: Tools
Software:
 For use case text, use a web-enabled requirements tool

that integrates with a popular word processor.
For use case diagrams, a UML CASE tool.
Hyperlink the use cases; present them on the project website.

Hardware: Use two projectors attached to dual video cards and
set the display width double to improve the spaciousness of the
drawing area or display 2 adjacent word processor windows .

Developer

Customer
System
Analyst

End User

Two adjacent projections.

Software
Architect

Software Engineering
74

Object-oriented Analysis and Design

Sample UP Artifacts and Timing

sSW Architecture Document

rsDesign ModelDesign

rsGlossary

rsSupplementary Specification

rsVision

rsUse-Case ModelRequirements

sDomain ModelBusiness
Modeling

C1..CnE1..EnI1Iteration

Const.Elab.Incep.ArtifactDiscipline

Software Engineering
75

Object-oriented Analysis and Design

Case Study:
Use Cases in the NextGen Inception Phase

Cash In
Cash Out
Manage Users
Start Up
Shut Down
Manage System

Tables
…

Process Rental
Analyze Sales

Activity
Manage Security
…

Process Sale
Handle

Returns

BriefCasualFully Dressed

