Object-oriented Analysis and Design

Applying UML and Patterns

An Introduction to
Object-oriented Analysis
and Design
and Iterative Development

Part II Inception

Software Engineering

Object-oriented Analysis and Design

Chap 6
Use Cases

Software Engineering

Object-oriented Analysis and Design

i Actorés ™)

0 “HBUmEBER” Nk
o BiK? BIER? FFRANR?

Q “HHEMET” ERR
o BixK? B%h? Facebook?

o NFTEGIE—RK “hREER” WFEHINAH. &
NS R G AR A IR RS B k. Ui
e n DAE 2 AR PR R A, FABERER
s TR VR R s WA AT IR SR

o?

Software Engineering

Object-oriented Analysis and Design

Chapters

4. Inception is not the requirement phase
5. Evolutionary requirement

6. Use cases

7. Other requirements

Software Engineering

e Object-oriented Analysis and Design

Actors(Z5%)

0 Actor: external entity interacts (behavior) with system, such as
a person (identified by role), computer system, or organization;
for example, a cashier.

0 Three kind of Actors

O Primary actor has user goals fulfilled through using services. (e.g.,
the cashier). Find user goals to drive the use cases.

O Supporting actor provides a service (e.g., the automated payment
authorization service is an example). Often a computer system, but
could be an organization or person. The purpose is to clarify
external interfaces and protocols.

O Offstage actor has an interest in the behavior of the use case, but is
not primary or supporting (e.g., a government tax agency).

o RFFIRINS H#E

O RGN £ flt: schedule

Software Engineering

Object-oriented Analysis and Design

Use Case(F#) «

0 Use case

Qis a collection of related success and failure scenarios that
describe an actor using a system to support a goal.

Obe text documents, not diagrams

OUse case modeling is primarily an act of writing text, not
drawing diagrams.

O There is nothing object-oriented about use cases;

O Use cases are a key requirements input to classic OOA/D.

Obe functional or behavioral requirements that indicate what the
system will do. In terms of the FURPS+ requirements types,
they emphasize the "F", but can also be used for other types.

Software Engineering

Object-oriented Analysis and Design
Use Case 2

0 The usage of use case

0 Decide and describe the functional requirements of the system

OBring agreement between the customer and software
developer

OGive a clear and consistent description of what the system
should do.

OProvide a basis for performing tests that verify the system
delivers the functionality stated.

OTrace the functional requirements into actual classes and
operations in the system.

Software Engineering

Object-oriented Analysis and Design
Use Case & Scenarios :

0 Scenario

OA use case represents a collection of scenarios: primary,
plus zero or more alternates.

O The primary scenario (375t / FEAR) corresponds to
the main system interactions, usually the ‘success’ scenario.
B, BB SR P E bR

o Alternate scenarios (R[5t / #1%J) correspond to
less frequent interactions and exceptions.

FESEBLA - H AR R b i 5 A

Software Engineering

Object-oriented Analysis and Design

i L 1 45 >

AN S A — K P ORIRAER” AL AT e
o5 A GRIA A RS SRR 2. T E
A AR AR A PR A, AR AR IRIER, T
ORI AN e B EIRATIEARSE

Q iR R EIRATIREE” MBI (Use Case)
O Goal:
O Actor:
O Primary scenario:
O List of alternate scenarios

Software Engineering

Object-oriented Analysis and Design

Scenarios(3 %) «

0 Scenario
Obe a specific sequence of actions and
interactions (£31%) between actors
and the system; it is also called a use
case instance.
olt is one particular story of using a

OK. Will
that be all?
system, or one path through the use

That will
G5, be $7.80.
ofor example, the' scenario ‘of Here is S10.
successfully purchasing items with

cash, or the scenario of failing to Thanks. Here
purchase items because of a credit
payment denial.

1 would like a
book of
stamps, please.

Software Engineering

Object-oriented Analysis and Design

Use Case Rf: FTHIE

0 System under Design(SuD): Hii% £ 40
0 Goal: 5% J7il ik
0 Actor:
o E M Jj (primary), #M77
O I & Gi(supporting)
QB E
Q Primary scenario:
oRT, RGEELIER, [HIFMFE
O RGUERTE N, BUHIEM
o S Uy i
o ML, RGHRL
Q Alternate scenario: 52k
o kS, RGUHEER, [FiH
o HHl, RGiIFLk
0 Alternate scenario: ‘5 iS5 ANfFE7E
Qo o o

Software Engineering

Object-oriented Analysis and Design
Use Case Modeling

0 Use case model

OBe the set of all written use cases; it is a model of the
black-box system's functionality and environment.

Obe not the only requirement artifact in the UP. There are
also the Supplementary Specification, Glossary, Vision,
and Business Rules.

Omay optionally include a UML use case diagram to show
the names of use cases and actors, and their relationships.
This gives a nice context diagram of a system and its
environment.

Software Engineering

Object-oriented Analysis and Design

Use case Diagrams
o POST »
2RO ¥
Items

—

Cashier @
@ Refund
o

Purchased
- items

Customer

/ System
boundary
o

o

Software Engineering

o Object-oriented Analysis and Design

Three Common Use Case Formats

Q Brief (high level)

O Terse one-paragraph summary, usually of the main success
scenario.

O During early requirements analysis, to get a quick sense of subject
and scope. May take only a few minutes to create.

Q Casual (fR{E#% D

O Informal paragraph format. Multiple paragraphs that cover various
scenarios.

O When? As above.

0 Fully

O dressed All steps and variations are written in detail, and there are
supporting sections, such as preconditions and success guarantees.

O After many use cases have been identified and written in a brief
format, then during the first requirements workshop a few (such
as 10%) of the architecturally significant and high-value use
cases are written in detail.

Software Engineering

Object-oriented Analysis and Design

Brief Use Case Example :

0 Use case: Handle Returns
O Main success scenario

® A customer arrives at a checkout with items to return. The

cashier uses the POS system to record each returned item ...
O Alternate Scenarios:

@®If the customer paid by credit, and the reimbursement
transaction to their credit account is rejected, inform the
customer and pay them with cash.

@ If the item identifier is not found in the system, notify the
Cashier and suggest manual entry of the identifier code
(perhaps it is corrupted).

If the system detects failure to communicate with the external
accounting system, ...

Software Engineering

Object-oriented Analysis and Design

{2 AR R ST

ANBITERIE—RK “ P RRER” BTHNH. BA
E AWML RE EMRERE. BUTHEE
WS R AEMBRMELEL, FERERER, TR
bR EABE R RERARES,

0 R FBIE (Use Case Diagram)
oActors (RLZH4f) -
O System:
oActors (APERSEZE) -
O Use Case named
O Actor — Use Cases

Software Engineering

Object-oriented Analysis and Design

Brief Use Case Example .

0 Use case: Buy Items
O Actors: Customer, Cashier
O Type: Primary
ODescription: A customer arrives at checkout with
items to purchase. The Cashier records the purchase items
and collects payment, On completion, the Customer leaves
with the items.

Software Engineering

Object-oriented Analysis and Design
Casual Use Case

0 Use case: Buy Items with Cash

0 Actors: Customer (initiator), Cashier

0 Purpose: Capture a sale and its cash payment

Q Overview:
O A customer arrives at checkout with items to purchase.
OThe Cashier records the purchase items and collects

payment,

0O On completion, the Customer leaves with the items.

0 Type: primary and essential.

0 Cross Reference: Functions:R1.1, R1.2, R1.3,R1.7,R1.9

Software Engineering

Object-oriented Analysis and Design

Use Case Scenario: Buy Items :

—_

. When a Customer arrives at the POS Terminal checkout
with items to purchase.

. The Cashier records each items. If there is more than one
of an item, the Cashier can enter the quantity as well.

. The system determines the item price and adds the item
information to running sales transaction. The description
and price of the current item are presented.

. On completion of item entry, the Cashier indicates to the

POS Terminal that item entry is complete.

The system calculates and presents the sale total.

The Cashier tells the Customer the total.

[3S)

w

IS

& ¥

Software Engineering

Object-oriented Analysis and Design

Use Case Scenario: Buy Items -

7. Customer choose payment type: If cash payment, see
section Pay by Cash. If credit payment, see section Pay
by Credit.

8. The system logs the complete sale.

9. The system updates inventory.

10. The system generates a receipt.

11. The Cashier gives the receipt to the Customer.

12. The Customer leaves with the items purchases.

Variation
2.1. If invalid item identifier entered, indicate error.

7.1. If Customer could not pay, cancel sales transaction.

Software Engineering

20

Object-oriented Analysis and Design
Use Case Scenario: Pay by Cash

1. The Customer gives a cash payment — the cash tendered possibly
greater than the sale total.

2. The Cashier records the tendered.

3. The system presents the balance due back to the Customer.

4. The Cashier deposits the cash received and extracts the balance
owing.

5. The Cashier gives the balance owing to the Customer.

Variation

1.1. If customer does not have sufficient cash, Cashier may cancel
sale or initiate another payment method.

4.1. If cash drawer does not contain sufficient cash to pay balance,
Cashier requests additional cash from supervisor or asks
Customer for different payment amount or method.

Software Engineering

* Object-oriented Analysis and Design

Fully Use Case Template

Use Case Section (Comment

Use Case Name Start with a verb.

Scope The system under design.
Level "user-goal"” or "subfunction"
Primary Actor (Calls on the system to deliver its services.

Stakeholders and Interests 'Who cares about this use case, and what do they want?

Preconditions \What must be true on start, and worth telling the reader?

'What must be true on successful completion, and worth
telling the reader.

Success Guarantee

Main Success Scenario |A typical, unconditional happy path scenario of success.

[Extensions Alternate scenarios of success or failure.

Special Requirements [Related non-functional requirements.

[Technology and Data Variations List |Varying /O methods and data formats.

[Frequency of Occurrence Influences investigation, testing, and timing of

Miscellancous Such as open issues.

Software Engineering

Object-oriented Analysis and Design

Use Case Scenario: Pay by Credit

—_

. The Customer communicates their credit information for
the credit payment.

. The system generates a credit payment request and send it
to an external Credit Authorization Service (CAS).

. Credit Authorization Service authorizes the payment.

4. The system receives a credit approval reply from the CAS.

The system posts (records) the credit payment and approval

reply information to the Account Receivable system.

Variation

3.1. If credit request denied by CAS, Cashier suggests

different payment method.

[

w

e

Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example :

0 Scope: NextGen POS application
0O Level: user goal

0 Primary Actor: Cashier

0 Stakeholders and Interests:

O Cashier: Wants accurate, fast entry, and no payment errors, as cash
drawer shortages are deducted from his/her salary.

O Salesperson: Wants sales commissions updated.

O Customer: Wants purchase and fast service with minimal effort.
Wants easily visible display of entered items and prices. Wants proof
of purchase to support returns.

O Company: Wants to accurately record transactions and satisfy
customer interests. Wants to ensure that Payment Authorization
Service payment receivables are recorded. Wants some fault tolerance
to allow sales capture even if server components (e.g., remote credit
validation) are unavailable. Wants automatic and fast update of
accounting and inventory.

Software Engineering

24

Object-oriented Analysis and Design

Fully Use Case Example »

OManager: Wants to be able to quickly perform override
operations, and easily debug Cashier problems.

0O Government Tax Agencies: Want to collect tax from every
sale. May be multiple agencies, such as national, state, and
county.

OPayment Authorization Service: Wants to receive digital
authorization requests in the correct format and protocol.
Wants to accurately account for their payables to the store.

Q Preconditions: Cashier is identified and authenticated.

0 Success Guarantee (or Postconditions): Sale is saved.
Tax is correctly calculated. Accounting and Inventory
are updated. Commissions recorded. Receipt is
generated. Payment authorization approvals are
recorded.

Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example »

0 Main Success Scenario (or Basic Flow)

O 1.Customer arrives at POS checkout with goods and/or services to
purchase.

Q 2.Cashier starts a new sale.

O 3.Cashier enters item identifier.

0O 4.System records sale line item and presents item description, price,
and running total. Price calculated from a set of price rules.

Q 5.Cashier repeats steps 3-4 until indicates done.

Q 6.System presents total with taxes calculated.

Q 7.Cashier tells Customer the total, and asks for payment.

0 8.Customer pays and System handles payment.

Q 9.System logs completed sale and sends sale and payment information
to the external Accounting system (for accounting and commissions)
and Inventory system (to update inventory).

Q 10.System presents receipt.

Q 11.Customer leaves with receipt and goods (if any).

Software Engineering

20

Object-oriented Analysis and Design

Fully Use Case Example «

0 Extensions (or Alternative Flows)
O *a. At any time, Manager requests an override operation:
1. System enters Manager-authorized mode.
® 2. Manager or Cashier performs one Manager-mode operation. e.g., cash
balance change, resume a suspended sale on another register, void a sale,
etc.
3. System reverts to Cashier-authorized mode.

O*b. At any time, System fails: To support recovery and correct
accounting, ensure all transaction sensitive state and events can
be recovered from any step of the scenario.

1. Cashier restarts System, logs in, and requests recovery of prior state.
¢ 2. System reconstructs prior state.
—2a. System detects anomalies preventing recovery:
< 1.System signals error to the Cashier, records the error, and
enters a clean state.

. #2.Cashier starts a new sale.
Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example ¢

0 Extensions (or Alternative Flows)
0 3a. Invalid item ID (not found in system):
1. System signals error and rejects entry.
2. Cashier responds to the error:
—2a. There is a human-readable item ID (e.g., a numeric UPC):

< 1.Cashier manually enters the item ID.

«2.System displays description and price.

«<2a. Invalid item ID: System signals error. Cashier tries alternate
method

—2b. There is no item ID, but there is a price on the tag:

< 1.Cashier asks Manager to perform an override operation.

«<+2.Managers performs override.

«3.Cashier indicates manual price entry, enters price, and requests
standard taxation for this amount (because there is no product
information, the tax engine can't otherwise deduce how to tax it)

—2c. Cashier performs Find Product Help to obtain true item ID and
price.

—2d. Otherwise, Cashier asks an employee for the true item ID or price,
and does either manual ID or manual price entry (see above).

Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example s

0 Extensions (or Alternative Flows)
O la. Customer or Manager indicate to resume a suspended sale.
|.Cashier performs resume operation, and enters the ID to
retrieve the sale.
#2.System displays the state of the resumed sale, with subtotal.
—2a. Sale not found.
«1.System signals error to the Cashier.
+2.Cashier probably starts new sale and re-enters all
items.
3 Cashier continues with sale (probably entering more items or
handling payment).
02-4a. Customer tells Cashier they have a tax-exempt status (e.g.,
seniors, native peoples)
1 .Cashier verifies, and then enters tax-exempt status code.
#2.System records status (which it will use during tax
calculations)

Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example -

0 Extensions (or Alternative Flows)

Q 3b. There are multiple of same item category and tracking unique item
identity not important (e.g., 5 packages of veggie-burgers):

| Cashier can enter item category identifier and the quantity.

0 3c. Item requires manual category and price entry (such as flowers or
cards with a price on them):

| Cashier enters special manual category code, plus the price.

0 3-6a: Customer asks Cashier to remove (i.e., void) an item from the
purchase: This is only legal if the item value is less than the void limit
for Cashiers, otherwise a Manager override is needed.

| .Cashier enters item identifier for removal from sale.
2 System removes item and displays updated running total.
—2a. Item price exceeds void limit for Cashiers:
+1.System signals error, and suggests Manager override.
+2.Cashier requests Manager override, gets it, and repeats
operation.

Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example s

0 Extensions (or Alternative Flows)
Q 3-6b. Customer tells Cashier to cancel sale:
|.Cashier cancels sale on System.
Q 3-6c¢. Cashier suspends the sale:
1 System records sale so that it is available for retrieval on any POS
register.
2 System presents a "suspend receipt"” that includes the line items,
and a sale ID used to retrieve and resume the sale.
O4a. The system supplied item price is not wanted (e.g., Customer
complained about something and is offered a lower price):
1 Cashier requests approval from Manager.
¢ 2 Manager performs override operation.
3_Cashier enters manual override price.
4 System presents new price.

Software Engineering

31

Object-oriented Analysis and Design

Fully Use Case Example 1

0 Extensions (or Alternative Flows)
Q Sc. Customer says they have credit in their account, to apply to the sale:
1.Cashier signals credit request.
2 Cashier enters Customer identification.
3.Systems applies credit up to price=0, and reduces remaining credit.
O 6a. Customer says they intended to pay by cash but don't have enough cash:
|.Cashier asks for alternate payment method.
— la. Customer tells Cashier to cancel sale. Cashier cancels sale on
System.
O 7a. Paying by cash:
1 .Cashier enters the cash amount tendered.
2.System presents the balance due, and releases the cash drawer.
@ 3.Cashier deposits cash tendered and returns balance in cash to
Customer.
4 System records the cash payment.

Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example 1.

Extensions (or Alternative Flows)
O 7b. Paying by credit:
#® 5.System receives payment approval, signals approval to Cashier, and
releases cash drawer (to insert signed credit payment receipt).
—5a. System receives payment denial:
< 1.System signals denial to Cashier.
42.Cashier asks Customer for alternate payment.
—5b. Timeout waiting for response.
<1.System signals timeout to Cashier.
+2.Cashier may try again, or ask Customer for alternate payment.
¢ 6.System records the credit payment, which includes the payment
approval.
#® 7.System presents credit payment signature input mechanism.
8.Cashier asks Customer for a credit payment signature. Customer enters
signature.
9.If signature on paper receipt, Cashier places receipt in cash drawer and
closes it.
Software Engineering

305

Object-oriented Analysis and Design

Fully Use Case Example »

0 Extensions (or Alternative Flows)
O5a. System detects failure to communicate with external tax
calculation system service:
1.System restarts the service on the POS node, and continues.
—la. System detects that the service does not restart.
< 1.System signals error.
«<2.Cashier may manually calculate and enter the tax, or
cancel the sale.
O 5b. Customer says they are eligible for a discount (e.g., employee,
preferred customer):
| Cashier signals discount request.
2 Cashier enters Customer identification.
3.System presents discount total, based on discount rules.

Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example u

Extensions (or Alternative Flows)
O 7b. Paying by credit:
|.Customer enters their credit account information.
#2.System displays their payment for verification.
#3.Cashier confirms.
—3a. Cashier cancels payment step:
< 1.System reverts to "item entry" mode.
¢4 System sends payment authorization request to an external
Payment Authorization Service System, and requests payment
approval.
—4a. System detects failure to collaborate with external system:
< 1.System signals error to Cashier.
<2.Cashier asks Customer for alternate payment.

Software Engineering

Object-oriented Analysis and Design

Fully Use Case Example 1

Extensions (or Alternative Flows)
O 7c. Paying by check...
O 7d. Paying by debit...
O 7e. Cashier cancels payment step:
1.System reverts to "item entry" mode.
O 7f. Customer presents coupons:
1 Before handling payment, Cashier records each coupon and System reduces price
as appropriate. System records the used coupons for accounting reasons.
— la. Coupon entered is not for any purchased item:
< 1.System signals error to Cashier.
O 9a. There are product rebates:
® 1.System presents the rebate forms and rebate receipts for each item with a rebate.
O 9b. Customer requests gift receipt (no prices visible):
| .Cashier requests gift receipt and System presents it.
O 9c. Printer out of paper.
® LIf System can detect the fault, will signal the problem.
2 .Cashier replaces paper.
3.Cashier requests another receipt.

Software Engineering

Object-oriented Analysis and Design
Fully Use Case Example

Q Special Requirements

O Touch screen Ul on a large flat panel monitor. Text must be
visible from 1 meter.

O Credit authorization response within 30 seconds 90% of the
time.

O Somehow, we want robust recovery when access to remote
services such the inventory system is failing.

O Language internationalization on the text displayed.

O Pluggable business rules to be insertable at steps 3 and 7.

© 000

Software Engineering

Object-oriented Analysis and Design
Fully Use Case Example s

0 Open Issues
O What are the tax law variations?
0 Explore the remote service recovery issue.
O What customization is needed for different businesses?
O Must a cashier take their cash drawer when they log out?
OCan the customer directly use the card reader, or does the
cashier have to do it?

Software Engineering

Object-oriented Analysis and Design

Two-Column Use Case Format »

. The Cashier tell the Customer
the total.

. The Customer gives a cash pay-
ment - the “cash tendered” - pos-
sibly greater than the sale total.

. The Cashier records the cash
received amount.

= o

=

9. Shows the balance due back to
X X the Customer.

10.The Cashier deposits the cash

received and extracts the balance

OWlﬂé. . . .

The Cashier gives the balance owing

and the printed receipt to the

Customer.

. 11. Logs the completed sale.
12. The Customer leaves with
items purchased

Alternative
Course: Line 2: Invalid identifier entered. Indicate error.
Line 9: Customer didn’t have enough cash.

. i Cancel sales transaction.

Software Engineering

41

Object-oriented Analysis and Design

Fully Use Case Example s

Technology and Data Variations List

O*a. Manager override entered by swiping an override card
through a card reader, or entering an authorization code via the
keyboard.

03a. Item identifier entered by bar code laser scanner (if bar code
is present) or keyboard.

0 3b. Item identifier may be any UPC, EAN, JAN, or SKU coding
scheme.

O7a. Credit account information entered by card reader or
keyboard.

O7b. Credit payment signature captured on paper receipt. But
within two years, we predict many customers will want digital
signature capture.

O Frequency of Occurrence: Could be nearly continuous.

Software Engineering

Object-oriented Analysis and Design

Two-Column Use Case Format :

Actor Action
1. This use case begin when a
Customer arrives at a POST
2. The Cashier records the
identifier from each item.
If there is more than one of
same item, the Cashier can
enter the quantity as well

System Response

w

. Determines the item price and
adds the item information to
running sales transaction.

The description and price of
the current item are presented.

4. On completion of item entry, the

Cashier indicates to the POST
that item entry is complete.

v

. Calculates and presents the
sale total

Software Engineering

A0

* Object-oriented Analysis and Design

Guideline: Write in an Essential Ul-Free S

Q During a requirements workshop, the cashier may say one of his goals is
to "log in." The cashier was probably thinking of a GUI, dialog box, user
ID, and password.

Q During early requirements work, "keep the user interface out, focus on
intent."
0 Concrete Style Avoid, During Early Requirements Work.
Q Concrete style, user interface decisions are embedded in the use
case text.

¢ Administrator enters ID and password in dialog box (see Picture 3).
System authenticates Administrator.
: System displays the "edit users" window (see Picture 4).

O Essential Style: Assume that the Manage Users use case requires
identification and authentication:
.

¢ Administrator identifies self.
System authenticates identity.

Software Engineering

* Object-oriented Analysis and Design

Guideline: Write Terse Use Cases

0 Write terse use cases. Delete "noise" words.
OEven small changes add wup, such as "System
authenticates. .." rather than "The System authenticates..."

Software Engineering

43

o Object-oriented Analysis and Design

Guideline:
Take an Actor and Actor-Goal Perspective

0 To stresses two attitudes during requirements analysis:
O Write requirements focusing on the users or actors of a
system, asking about their goals and typical situations.
OFocus on understanding what the actor considers a
valuable result.

Software Engineering

45

Object-oriented Analysis and Design

e EE

FRBRER
<<external system>>
ERER — BERG
CEEBREE)
2t ‘
wERE). |
L.EEESS
I\ gﬁ HIRGR

e —

Software Engineering

* Object-oriented Analysis and Design
3 ﬁ'&,

Guideline: Write Black-Box Use Cases P}

Black-box use cases
Q do not describe the internal workings of the system, its components,
or design.
By defining system responsibilities with black-box use cases, one can
specify what the system must do (the behavior or functional
requirements) without deciding how it will do it (the design).
O the definition of "analysis" versus "design" is "what" versus "how."

Black-box style Not

The system records the sale. The system writes the sale to a database. ...or (even worse):
The system generates a SQL INSERT statement for the
sale...

Software Engineering

44

Object-oriented Analysis and Design

* % %k
Guideline: How to Find Use Cases :

0 Use cases are defined to satisfy the goals of the primary
actors. The basic procedure is:
0 1. Choose the system boundary.
@ Is it just a software application, the hardware and application
as a unit, that plus a person using it, or an entire organization?
2. Identity the primary actors
@ that have goals fulfilled through using services of the system.
0 3. Identify the goals for each primary actor.
0O4. Define use cases that satisfy user goals; name them
according to their goal.
user-goal level use cases will be one-to-one with user goals,
but there is at least one exception, as will be examined.

Software Engineering

Object-oriented Analysis and Design
Guideline: How to Find Use Cases 2

Questions to Help Find Actors and Goals?
O Who starts and stops the system?
O Who does system administration?
O Who does user and security management?
Ols "time" an actor because the system does something in response
to a time event?
OIs there a monitoring process that restarts the system if it fails?
O Who evaluates system activity or performance?
OHow are software updates handled? Push or pull update?
O Who evaluates logs? Are they remotely retrieved?
OlIn addition to human primary actors, are there any external
software or robotic systems that call upon services of the system?
O Who gets notified when there are errors or failures?
Software Engineering

Object-oriented Analysis and Design

Guideline: How to Find Use Cases 4

Case study: Primary actors and goals at different system
boundaries

Enterprise Selling Things
Checkout Service
- Sales Tax
A
I“' Y POS System
Goal: Collect -
taxes on sales Sales Activity
System gashier
_* Customer \
/ \
\
X
\ \
Goal: Buy items Goal: Analyze sales Goal: Process sales
and performance data

Software Engineering

o Object-oriented Analysis and Design

Find Actors and Goals: Event Analys@

0 Event Based
Oto identify external events that a system must respond to.
0. What are they, where from, and why? Often, a group of
events belong to the same use case.
ORelate the events to actors and use cases.

Goal/Use Case

process a sale

External Event From Actor

enter sale line item | Cashier

enter payment Cashier or Customer | process a sale

Software Engineering

131

Object-oriented Analysis and Design

Guideline: d
What Tests Can Help Find Useful Use Cases (2)

O The EBP Test
®Elementary Business Process (EBP) is a term from the
business process engineering field
®EBP is similar to the term wuser task in usability
engineering
A task performed by one person in one place at one time, in
response to a business event, which adds measurable
business value and leaves the data in a consistent state,
e.g., Approve Credit or Price Order
O The Size Test
¢ A common mistake in use case modeling is to define just a
single step within a series of related steps as a use case by

iEelf, such as defining a use case called Enter an Item ID.
Software Engineering ——

* Object-oriented Analysis and Design

Guideline: How to Find Use Cases 3

0 Organize the Actors and Goals

oCase study
Cashier | process sales System add users
process rentals Administrator | modify users
handle returns delete users
cash in manage security
cash out manage system tables
Manager | start up Sales Activity | analyze sales and
shut down System performance data

Software Engineering

20

e Object-oriented Analysis and Design

Guideline: _
What Tests Can Help Find Useful Use Cases (1)

0 "What is a useful level to express use cases for
application requirements analysis?" rules of thumb,
including:

O The Boss Test

®Your boss asks, "What have you been doing all day?"
You reply: "Logging in!" Is your boss happy?

@ If not, the use case fails the Boss Test, which implies
it is not strongly related to achieving results of
measurable value.

OThe EBP Test
O The Size Test

Software Engineering

Object-oriented Analysis and Design

Guideline:
What Tests Can Help Find Useful Use Cases (3)

0 Example: Applying the Tests
O Negotiate a Supplier Contract
®Much broader and longer than an EBP. Could be
modeled as a business use case, rather than a system
use case.
O Handle Returns
#®OK with the boss. Seems like an EBP. Size is good.
OLog In
#Boss not happy if this is all you do all day!
O Move Piece on Game Board
*Single step, fails the size test.

Software Engineering

24

Object-oriented Analysis and Design
EL

Motivation: Other Benefits of Use Cases

Q To replace detailed, low-level function lists with use cases
0 High-Level System Feature Lists Are Acceptable
Oa terse, high-level feature list, called system features, added
to a Vision document can usefully summarize system
functionality.
O Summary of System Features, for POS.
#sales capture
payment authorization (credit, debit, check)
®system administration for users, security, code and

constants tables, and so on
*

Software Engineering

20

Object-oriented Analysis and Design

* %k

Applying UML: Use Case Diagrams :

system boundary

NextGen POS

alternate

_~~ communication
notation for
2 computer

Payment tom actor

yst
Authorization o __#]
rvice

Handle Retums

oo | 4
Tax Caletator

Ticlor?
Accounting
System

\
26 Gaghier

Manager

clor? Analyze Activity
Sales Activity
System

%/ M

| .
System Manage Users N
Administrator © use case

Software Engineérmy

Object-oriented Analysis and Design

AT

Applying UML: Use Case Diagrams 4 j

Process Sale

Extension Points:
Payment
VIP Customer

UML notation:
1. The extending use case
points to the base use case.

Ffxtend?
Payment, if Customer
presents a gift certificate

Handle Gift Certificate
Payment

Software Engineering

2. The condition and
extension point can be
shown on the line.

sigt

Object-oriented Analysis and Design

Applying UML: Use Case Diagrams .

Draw a simple use case diagram in conjunction with an actor-

goal list.

Use case diagram is an excellent picture of the system context;
Oit makes a good context diagram,
Oshowing the boundary of a system, what lies outside of it, and

how it gets used.

Olt serves as a communication tool that summarizes the behavior

of a system and its actors.

Guideline: Downplay Diagramming, Keep it Short and

Simple.

If an organization is spending many hours/days working on a
use case diagram and discussing use case relationships, rather
than focusing on writing text, effort has been misplaced.

Software Engineering

26

Object-oriented Analysis and Design

Ceshioy Fnclude?,-*”

the base use
case points to
the included use
case

NextGen POS.

Process Sale

"< Jhnclude?

O e i Binclude? S~
Handle Check Handle Cash Handle Credit
Payment Payment Payment

<. -~ ictor?

‘(\ I Hinclude? = Credit
Shnolude?>. | -~ Tnclude? Authorization

o Selt T
UML notation: g Senvce

e Process Rental
Handle Returns

Manage Users

or?
Accounting
System

Engineering

Object-oriented Analysis and Design

KO EBEEN

Automated bar-code based lockers system for supermarket

Software Engineerig

10

Object-oriented Analysis and Design

EBIWI: HIEEN.

a RGuGt
OB MEF? B2 ZKTSHRINL? BRI 4R AR A2
o FESHH
O ? EELI? BRMARHIEAE? FFIT5AD 2
o EEZ5ET HER
ofFf? HUE? FFIT? RIT? MAMME?
a Al
o AU WL AN 2
a AR R E &M FEEM?
O fAALI R P SRR R A B) 2
a A ?

Software Engineering

Object-oriented Analysis and Design
e
. . o E
Work With Use Cases in Iterative Methods §

0 UP encourages use-case driven development.

> Functional requirements are primarily recorded in use cases

> Use cases are an important part of iterative planning. The work
of an iteration is in part defined by choosing some use case
scenarios, or entire use cases. And use cases are a key input to
estimation.

> Use-case realizations drive the design. The team designs
collaborating objects and subsystems in order to perform or
realize the use cases.

> Use cases often influence the organization of user manuals.

> Functional or system testing corresponds to the scenarios of use
cases.

> UI "wizards" or shortcuts may be created for the most common
scenarios of important use cases to ease common tasks.

Software Engineering

Object-oriented Analysis and Design

fEFUMLIE) &

0 UMLI 3 B 8237 &
o i 3 — F B R AT B IR, 85T A% I 2 55 451 LA
JEjIncludeskextend FI) 5 2 B 04K
o il F PR &R Ge 2 18] ARl S5 R R B

Qo
a UMLIE 5l & 1 06 244
o TR, HH) EEE
oA FBISEIE AE . WIH FHI, 40’5 5% Use Case X
ﬁﬁ%«%%ﬁﬂﬂ, PRT LA FH 35 20 B 4 T 2 1 37 SR iR

O FHMb S5 VAR R WU B . 522500 553 Bh A S 1R 2
B, HAT SRR R 2 P X AR AR

Software Engineering

(%1

Object-oriented Analysis and Design

RO : WE vs. KR

o FEFBN R “ i Z€” W, fATE TRl
R EMERIFR AT CEH -
O LR M AIF M. AFRI MM, KHEHEN R
. MY, EEWYE. LRI L, AT
B ANFIR . ERAR e
O T T T R B T TRl
O _[RMREL 2/ BAR S Huser-goal 2 Al ¥ A 451 2
O LR WG T F 51 2%) s I 481 2
O L M FH A5 i 461 3k b A Bb2c 5 c2e) 22 7 2 1 2
151355 B

Software Engineering

Object-oriented Analysis and Design

Chap 6X1
FABI AT ¥4k — UMLE 3 B

Software Engineering

04

* Object-oriented Analysis and Design
UMLESI B E AR/ S

HERAE /TR
PRI
IR B,

FIEAT AL B
PR
PRsERA: (3R]
JAFFAT AT

® 9 ;AW -

VERE: BITE / JEE A
SCFRRGE: HRM
W& TR 1

Software Engineering

11

Object-oriented Analysis and Design

ATM Withdraw Activities Diagram
°

-y P S—
[card
{ Insert ATM Cardh—o L& 1} Prompt for PIN—{Enter PIN}— &

[carfl not Re
recoggized] [<ptries] pnd
(" Eject Card | >= rc—f—ﬁ

{ EjectCard | o[22 3 trigg TCONTISCATe (=«

not
card Ios!‘ Texpirkd]

[invalii PIN]
card HO(
s
1 Prompt for Transactiop—r-ror— i Check PIN Hard 1
[valid [not [sufficient

[select Yl_FA_t account J3 exceeded J . funds]

® withdrawl__ #
Nictec) et diplomaunt msficient [T o
o Fer accqunt | excegded | 5] of finds]

[not out

Eject Card of fuhds]

Print Welcome —_— —_—
-~ Message —t wdk—i Print Receupﬁ-—< W"

Software Engineering

Object-oriented Analysis and Design

AP

Evolve Use Cases Across the Iterations 1 %

Discipline | Artifact | Incep Elab 1

1 week 4 weeks
Require | Use- 2-day requirements workshop. [Near the end of this
ments Case Most use cases identified by name, | iteration, host a 2-day

Model |and summarized in a short | requirements workshop.
paragraph. Pick 10% from the |Obtain insight and
high-level list to analyze and write | feedback ~ from the
in detail. This 10% will be the | implementation work,
most architecturally important, | then complete 30% of
risky, and high-business value. the use cases in detail.

Software Engineering

29

Object-oriented Analysis and Design

ATH

Evolve Use Cases Across the Iterations s #;

Discipline | Artifact | Incep | Elab 1 Elab2 |Elab3 |Elab4
1 week | 4 weeks 4 weeks | 3 weeks |3 weeks

Design Design | none Design for a | repeat repeat Repeat. The high

Model small set of risk and
high-risk architecturally
architecturall significant aspects
y significant should now be
requirements. stabilized.

Implemen | Implem | none Implement Repeat. | Repeat. |Repeat. 15% of

tation entation these. 5% of | 10% of | the final system is
Model the final | the final | built.
(code, system | system
etc.) is built. | is built.

Software|[Enginegring

Object-oriented Analysis and Design

UMLIEZ) R Tk &2

O25% / RitHIREG

@ FW / B/ TR ER: lk%éﬁ—&$§ﬂﬂﬁﬂ?&5ﬂ
et ~{ sannna e
b 1! M, T meminn | of wressen
W @ J. "

Dinner Now {13 fise wm.x ‘ hem)

u.-m

@ I4T, ForkifE
@ k¥, FornRkiE ERTESRR L2 5H KRR

Software Engineering

Object-oriented Analysis and Design
A &,

Evolve Use Cases Across the Iterations » #

Elab 2 Elab 3 Elab 4
4 weeks 3 weeks
3 weeks

Near the end of this iteration, | Repeat, Repeat with the goal of
host a 2-day requirements complete 70% of | 8090% of the use cases
all use cases in | clarified and written in

workshop. Obtain insight and
detail. detail.

feedback from the
implementation ~ work, then
complete 50% of the use cases
in detail.

Only a small portion of these
have been built in
elaboration; the remainder
are done in construction.

Software Engineering

Object-oriented Analysis and Design

ATF

Evolve Use Cases Across the Iterations .

Discipline | Artifact [Incep | Elab 1 Elab2 |Elab3 |[Elab4
1 week |4 weeks 4 weeks | 3 weeks | 3 weeks

Project | SW Very | Estimate a little [a little | Overall project

Manage |Develo |vague |starts to | better |better |duration, major
ment pment |estima | take shape. | ... milestones,
Plan te of effort, and cost
total estimates can
effort. now be
rationally

committed to.

Software Engineering

12

Object-oriented Analysis and Design
(S
Process and setting context for writing use cases @4“

When Where.

define or polish al reguirements.
‘Soveral imes during elaboration feratons.

7
hY /i
o ol
T PP
T AT
(ENEEPZ (RN P AN
T T OO T T

i e

How: Tools.

Who oior:
Many, incluing ond usors and developers, wil play Forusscaso et uso s wet-anabled requtemerts ol
i oo o o B mznnmgdrzmsw\mzpupu\ar o prces
et e cooe b e G e roac ebese
Led by system analys who i resporsibie for
requirements defniion

Software Engineering

fardware: Use two projocors atached to dual video cards and
setthe display width double 10 mprove the spaciousness of he.
Grawing area or isplay 2 adjacent word processor windows

Object-oriented Analysis and Design

Sample UP Artifacts and Timing

Discipline Artifact Incep. | Elab. | Const.
Iteration | 11 El.En | C1..Cn
Business Domain Model s
Modeling
Requirements | Use-Case Model s r
Vision s r
Supplementary Specification s r
Glossary s r
Design Design Model s r
SW Architecture Document s

Software Engineering

Object-oriented Analysis and Design

Case Study:
Use Cases in the NextGen Inception Phase

Fully Dressed Casual Brief
Process Sale | Process Rental Cash In
Handle Analyze Sales Cash Out
Returns Activity Manage Users
Manage Security Start Up
Shut Down
Manage System
Tables

Software Engineering

