
Design Patterns In Java Bob Tarr

Some
Object-Oriented Design

Principles

 Bob TarrDesign Patterns In Java
Some OO Design Principles

22

Principle #1Principle #1

Minimize The Accessibility of Classes and
Members

 Bob TarrDesign Patterns In Java
Some OO Design Principles

33

The Meaning of AbstractionThe Meaning of Abstraction

l Tony Hoare: “Abstraction arises from a recognition of similarities
between certain objects, situations, or processes in the real world,
and the decision to concentrate upon those similarities and to
ignore for the time being the differences.”

l Grady Booch: “An abstraction denotes the essential
characteristics of an object that distinguish it from all other kinds
of objects and thus provide crisply defined conceptual boundaries,
relative to the perspective of the viewer.”

l Abstraction is one of the fundamental ways to deal with
complexity

l An abstraction focuses on the outside view of an object and
separates an object’s behavior from its implementation

 Bob TarrDesign Patterns In Java
Some OO Design Principles

44

EncapsulationEncapsulation

l Grady Booch: “Encapsulation is the process of
compartmentalizing the elements of an abstraction that constitute
its structure and behavior; encapsulation serves to separate the
contractual interface of an abstraction and its implementation.”

l Craig Larman: “Encapsulation is a mechanism used to hide the
data, internal structure, and implementation details of an object.
All interaction with the object is through a public interface of
operations.”

l Classes should be opaque

l Classes should not expose their internal implementation details

 Bob TarrDesign Patterns In Java
Some OO Design Principles

55

Information Hiding In JavaInformation Hiding In Java

l Use private members and appropriate accessors and mutators
wherever possible

l For example:
é Replace
public double speed;

é with
private double speed;
public double getSpeed() {
 return(speed);
}
public void setSpeed(double newSpeed) {
 speed = newSpeed;
}

 Bob TarrDesign Patterns In Java
Some OO Design Principles

66

Use Accessors and Mutators, Not Public MembersUse Accessors and Mutators, Not Public Members

l You can put constraints on values

public void setSpeed(double newSpeed) {
if (newSpeed < 0) {

 sendErrorMessage(...);

 newSpeed = Math.abs(newSpeed);

 }

 speed = newSpeed;

}

l If users of your class accessed the fields directly, then they would
each be responsible for checking constraints

 Bob TarrDesign Patterns In Java
Some OO Design Principles

77

Use Accessors and Mutators, Not Public MembersUse Accessors and Mutators, Not Public Members

l You can change your internal representation without changing the
interface

// Now using metric units (kph, not mph)

public void setSpeedInMPH(double newSpeed) {

 speedInKPH = convert(newSpeed);

}

public void setSpeedInKPH(double newSpeed) {

 speedInKPH = newSpeed;

}

 Bob TarrDesign Patterns In Java
Some OO Design Principles

88

Use Accessors and Mutators, Not Public MembersUse Accessors and Mutators, Not Public Members

l You can perform arbitrary side effects

public double setSpeed(double newSpeed) {

 speed = newSpeed;

 notifyObservers();

}

l If users of your class accessed the fields directly, then they would
each be responsible for executing side effects

 Bob TarrDesign Patterns In Java
Some OO Design Principles

99

Principle #2Principle #2

Favor Composition Over Inheritance

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1010

CompositionComposition

l Method of reuse in which new functionality is obtained by
creating an object composed of other objects

l The new functionality is obtained by delegating functionality to
one of the objects being composed

l Sometimes called aggregation or containment, although some
authors give special meanings to these terms

l For example:
é Aggregation - when one object owns or is responsible for another object

and both objects have identical lifetimes (GoF)

é Aggregation - when one object has a collection of objects that can exist on
their own (UML)

é Containment - a special kind of composition in which the contained object
is hidden from other objects and access to the contained object is only via
the container object (Coad)

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1111

CompositionComposition

l Composition can be:
é By reference

é By value

l C++ allows composition by value or by reference

l But in Java all we have are object references!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1212

Advantages/Disadvantages Of CompositionAdvantages/Disadvantages Of Composition

l Advantages:
é Contained objects are accessed by the containing class solely through their

interfaces

é "Black-box" reuse, since internal details of contained objects are not visible

é Good encapsulation

é Fewer implementation dependencies

é Each class is focused on just one task

é The composition can be defined dynamically at run-time through objects
acquiring references to other objects of the same type

l Disadvantages:
é Resulting systems tend to have more objects

é Interfaces must be carefully defined in order to use many different objects
as composition blocks

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1313

InheritanceInheritance

l Method of reuse in which new functionality is obtained by
extending the implementation of an existing object

l The generalization class (the superclass) explicitly captures the
common attributes and methods

l The specialization class (the subclass) extends the implementation
with additional attributes and methods

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1414

Advantages/Disadvantages Of InheritanceAdvantages/Disadvantages Of Inheritance

l Advantages:
é New implementation is easy, since most of it is inherited

é Easy to modify or extend the implementation being reused

l Disadvantages:
é Breaks encapsulation, since it exposes a subclass to implementation details

of its superclass

é "White-box" reuse, since internal details of superclasses are often visible to
subclasses

é Subclasses may have to be changed if the implementation of the superclass
changes

é Implementations inherited from superclasses can not be changed at run-
time

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1515

Inheritance vs Composition ExampleInheritance vs Composition Example

l This example comes from the book Effective Java by Joshua
Bloch

l Suppose we want a variant of HashSet that keeps track of the
number of attempted insertions. So we subclass HashSet as
follows:

 public class InstrumentedHashSet extends HashSet {

 // The number of attempted element insertions

 private int addCount = 0;

 public InstrumentedHashSet(Collection c) {super(c);}

 public InstrumentedHashSet(int initCap, float loadFactor) {

 super(initCap, loadFactor);

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1616

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

 public boolean add(Object o) {

 addCount++;

 return super.add(o);

 }

 public boolean addAll(Collection c) {

 addCount += c.size();

 return super.addAll(c);

 }

 public int getAddCount() {

 return addCount;

 }

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1717

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

l Looks good, right. Let’s test it!

 public static void main(String[] args) {

 InstrumentedHashSet s = new InstrumentedHashSet();

 s.addAll(Arrays.asList(new String[] {"Snap","Crackle","Pop"}));

 System.out.println(s.getAddCount());

 }

l We get a result of 6, not the expected 3. Why?

l It’s because the internal implementation of addAll() in the
HashSet superclass itself invokes the add() method. So first we
add 3 to addCount in InstrumentedHashSet’s addAll(). Then we
invoke HashSet’s addAll(). For each element, this addAll()
invokes the add() method, which as overridden by
InstrumentedHashSet adds one for each element. The result: each
element is double counted.

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1818

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

l There are several ways to fix this, but note the fragility of our
subclass. Implementation details of our superclass affected the
operation of our subclass.

l The best way to fix this is to use composition. Let’s write an
InstrumentedSet class that is composed of a Set object. Our
InstrumentedSet class will duplicate the Set interface, but all Set
operations will actually be forwarded to the contained Set object.

l InstrumentedSet is known as a wrapper class, since it wraps an
instance of a Set object

l This is an example of delegation through composition!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

1919

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

public class InstrumentedSet implements Set {

 private final Set s;

 private int addCount = 0;

 public InstrumentedSet(Set s) {this.s = s;}

 public boolean add(Object o) {

 addCount++;

 return s.add(o);

 }

 public boolean addAll(Collection c) {

 addCount += c.size();

 return s.addAll(c);

 }

 public int getAddCount() {return addCount;}

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2020

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

 // Forwarding methods (the rest of the Set interface methods)

 public void clear() { s.clear(); }

 public boolean contains(Object o) { return s.contains(o); }

 public boolean isEmpty() { return s.isEmpty(); }

 public int size() { return s.size(); }

 public Iterator iterator() { return s.iterator(); }

 public boolean remove(Object o) { return s.remove(o); }

 public boolean containsAll(Collection c)

 { return s.containsAll(c); }

 public boolean removeAll(Collection c)

 { return s.removeAll(c); }

 public boolean retainAll(Collection c)

 { return s.retainAll(c); }

 public Object[] toArray() { return s.toArray(); }

 public Object[] toArray(Object[] a) { return s.toArray(a); }

 public boolean equals(Object o) { return s.equals(o); }

 public int hashCode() { return s.hashCode(); }

 public String toString() { return s.toString(); }

}

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2121

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

l Note several things:
é This class is a Set

é It has one constructor whose argument is a Set

é The contained Set object can be an object of any class that implements the
Set interface (and not just a HashSet)

é This class is very flexible and can wrap any preexisting Set object

l Example:

 List list = new ArrayList();
 Set s1 = new InstrumentedSet(new TreeSet(list));

 int capacity = 7;

 float loadFactor = .66f;

 Set s2 = new InstrumentedSet(new HashSet(capacity, loadFactor));

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2222

Coad's RulesCoad's Rules

Use inheritance only when all of the following criteria are satisfied:

l A subclass expresses "is a special kind of" and not "is a role
played by a"

l An instance of a subclass never needs to become an object of
another class

l A subclass extends, rather than overrides or nullifies, the
responsibilities of its superclass

l A subclass does not extend the capabilities of what is merely a
utility class

l For a class in the actual Problem Domain, the subclass specializes
a role, transaction or device

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2323

Inheritance/Composition Example 1Inheritance/Composition Example 1

Person

Name
Address

Passenger

Frequent Flyer ID
Reservation

Agent

Password
Authorization Level

Agent Passenger

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2424

Inheritance/Composition Example 1 (Continued)Inheritance/Composition Example 1 (Continued)

l "Is a special kind of" not "is a role played by a"
é Fail. A passenger is a role a person plays. So is an agent.

l Never needs to transmute
é Fail. A instance of a subclass of Person could change from Passenger to

Agent to Agent Passenger over time

l Extends rather than overrides or nullifies
é Pass.

l Does not extend a utility class
é Pass.

l Within the Problem Domain, specializes a role, transaction or
device

é Fail. A Person is not a role, transaction or device.

Inheritance does not fit here!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2525

Inheritance/Composition Example 1 (Continued)Inheritance/Composition Example 1 (Continued)

Passenger

Frequent Flyer ID
Reservation

Person

Name
Address
Passenger
Agent

Agent

Password
Authorization Level

Composition to the rescue!Composition to the rescue!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2626

Inheritance/Composition Example 2Inheritance/Composition Example 2

Passenger

Frequent Flyer ID
Reservation

Agent

Password
Authorization Level

Person

Name
Address
Role

PersonRole

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2727

Inheritance/Composition Example 2 (Continued)Inheritance/Composition Example 2 (Continued)

l "Is a special kind of" not "is a role played by a"
é Pass. Passenger and agent are special kinds of person roles.

l Never needs to transmute
é Pass. A Passenger object stays a Passenger object; the same is true for an

Agent object.

l Extends rather than overrides or nullifies
é Pass.

l Does not extend a utility class
é Pass.

l Within the Problem Domain, specializes a role, transaction or
device

é Pass. A PersonRole is a type of role.

Inheritance ok here!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2828

Inheritance/Composition Example 3Inheritance/Composition Example 3

Reservation

DateExpires
DiscountCategory

Purchase

ProductSet
Store

Transaction

ID
Date

 Bob TarrDesign Patterns In Java
Some OO Design Principles

2929

Inheritance/Composition Example 3 (Continued)Inheritance/Composition Example 3 (Continued)

l "Is a special kind of" not "is a role played by a"
é Pass. Reservation and purchase are a special kind of transaction.

l Never needs to transmute
é Pass. A Reservation object stays a Reservation object; the same is true for

a Purchase object.

l Extends rather than overrides or nullifies
é Pass.

l Does not extend a utility class
é Pass.

l Within the Problem Domain, specializes a role, transaction or
device

é Pass. It's a transaction.

Inheritance ok here!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3030

Inheritance/Composition Example 4Inheritance/Composition Example 4

Reservation

DateExpires
DiscountCategory

java.util.Observable

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3131

Inheritance/Composition Example 4 (Continued)Inheritance/Composition Example 4 (Continued)

l "Is a special kind of" not "is a role played by a"
é Fail. A reservation is not a special kind of observable.

l Never needs to transmute
é Pass. A Reservation object stays a Reservation object.

l Extends rather than overrides or nullifies
é Pass.

l Does not extend a utility class
é Fail. Observable is just a utility class.

l Within the Problem Domain, specializes a role, transaction or
device

é Not Applicable. Observable is a utility class, not a Problem Domain class

Inheritance does not fit here!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3232

Inheritance/Composition SummaryInheritance/Composition Summary

l Both composition and inheritance are important methods of reuse

l Inheritance was overused in the early days of OO development

l Over time we've learned that designs can be made more reusable
and simpler by favoring composition

l Of course, the available set of composable classes can be enlarged
using inheritance

l So composition and inheritance work together

l But our fundamental principle is:

Favor Composition Over Inheritance

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3333

Principle #3Principle #3

Program To An Interface, Not An
Implementation

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3434

InterfacesInterfaces

l An interface is the set of methods one object knows it can invoke
on another object

l An object can have many interfaces. (Essentially, an interface is
a subset of all the methods that an object implements).

l A type is a specific interface of an object

l Different objects can have the same type and the same object can
have many different types

l An object is known by other objects only through its interface

l In a sense, interfaces express "is a kind of" in a very limited way
as "is a kind of that supports this interface"

l Interfaces are the key to pluggability!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3535

Implementation Inheritance vs Interface InheritanceImplementation Inheritance vs Interface Inheritance

l Implementation Inheritance (Class Inheritance) - an object's
implementation is defined in terms of another's objects
implementation

l Interface Inheritance (Subtyping) - describes when one object can
be used in place of another object

l The C++ inheritance mechanism means both class and interface
inheritance

l C++ can perform interface inheritance by inheriting from a pure
abstract class

l Java has a separate language construct for interface inheritance -
the Java interface

l Java's interface construct makes it easier to express and
implement designs that focus on object interfaces

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3636

Benefits Of InterfacesBenefits Of Interfaces

l Advantages:
é Clients are unaware of the specific class of the object they are using

é One object can be easily replaced by another

é Object connections need not be hardwired to an object of a specific class,
thereby increasing flexibility

é Loosens coupling

é Increases likelihood of reuse

é Improves opportunities for composition since contained objects can be of
any class that implements a specific interface

l Disadvantages:
é Modest increase in design complexity

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3737

Interface ExampleInterface Example

/**

 * Interface IManeuverable provides the specification

 * for a maneuverable vehicle.

 */

public interface IManeuverable {

 public void left();

 public void right();

 public void forward();

 public void reverse();

 public void climb();

 public void dive();

 public void setSpeed(double speed);

 public double getSpeed();

}

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3838

Interface Example (Continued)Interface Example (Continued)

public class Car

 implements IManeuverable { // Code here. }

public class Boat

 implements IManeuverable { // Code here. }

public class Submarine

 implements IManeuverable { // Code here. }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

3939

Interface Example (Continued)Interface Example (Continued)

l This method in some other class can maneuver the vehicle
without being concerned about what the actual class is (car, boat,
submarine) or what inheritance hierarchy it is in

 public void travel(IManeuverable vehicle) {

 vehicle.setSpeed(35.0);

 vehicle.forward();

 vehicle.left();

 vehicle.climb();

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4040

Principle #4Principle #4

The Open-Closed Principle:

Software Entities Should Be Open For
Extension, Yet Closed For Modification

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4141

The Open-Closed PrincipleThe Open-Closed Principle

l The Open-Closed Principle (OCP) says that we should attempt to
design modules that never need to be changed

l To extend the behavior of the system, we add new code. We do
not modify old code.

l Modules that conform to the OCP meet two criteria:
é Open For Extension - The behavior of the module can be extended to meet

new requirements

é Closed For Modification - the source code of the module is not allowed to
change

l How can we do this?
é Abstraction

é Polymorphism

é Inheritance

é Interfaces

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4242

The Open-Closed PrincipleThe Open-Closed Principle

l It is not possible to have all the modules of a software system
satisfy the OCP, but we should attempt to minimize the number of
modules that do not satisfy it

l The Open-Closed Principle is really the heart of OO design

l Conformance to this principle yields the greatest level of
reusability and maintainability

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4343

Open-Closed Principle ExampleOpen-Closed Principle Example

l Consider the following method of some class:

 public double totalPrice(Part[] parts) {

 double total = 0.0;

 for (int i=0; i<parts.length; i++) {

 total += parts[i].getPrice();

 }

 return total;

 }

l The job of the above function is to total the price of each part in
the specified array of parts

l If Part is a base class or an interface and polymorphism is being
used, then this class can easily accommodate new types of parts
without having to be modified!

l It conforms to the OCP

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4444

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l But what if the Accounting Department decrees that motherboard
parts and memory parts should have a premium applied when
figuring the total price.

l How about the following code?
 public double totalPrice(Part[] parts) {

 double total = 0.0;

 for (int i=0; i<parts.length; i++) {

 if (parts[i] instanceof Motherboard)

 total += (1.45 * parts[i].getPrice());

 else if (parts[i] instanceof Memory)

 total += (1.27 * parts[i].getPrice());

 else

 total += parts[i].getPrice();

 }

 return total;

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4545

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l Does this conform to the OCP? No way!

l Every time the Accounting Department comes out with a new
pricing policy, we have to modify the totalPrice() method! It is
not Closed For Modification. Obviously, policy changes such as
that mean that we have to modify code somewhere, so what could
we do?

l To use our first version of totalPrice(), we could incorporate
pricing policy in the getPrice() method of a Part

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4646

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l Here are example Part and ConcretePart classes:

 // Class Part is the superclass for all parts.

 public class Part {

 private double price;

 public Part(double price) (this.price = price;}

 public void setPrice(double price) {this.price = price;}

 public double getPrice() {return price;}

 }

 // Class ConcretePart implements a part for sale.

 // Pricing policy explicit here!

 public class ConcretePart extends Part {

 public double getPrice() {

 // return (1.45 * price); //Premium

 return (0.90 * price); //Labor Day Sale

 }

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4747

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l But now we must modify each subclass of Part whenever the
pricing policy changes!

l A better idea is to have a PricePolicy class which can be used to
provide different pricing policies:

 // The Part class now has a contained PricePolicy object.

 public class Part {

 private double price;

 private PricePolicy pricePolicy;

 public void setPricePolicy(PricePolicy pricePolicy) {

 this.pricePolicy = pricePolicy;}

 public void setPrice(double price) {this.price = price;}

 public double getPrice() {return pricePolicy.getPrice(price);}

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4848

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

 /**

 * Class PricePolicy implements a given price policy.

 */

 public class PricePolicy {

 private double factor;

 public PricePolicy (double factor) {

 this.factor = factor;

 }

 public double getPrice(double price) {return price * factor;}

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

4949

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l With this solution we can dynamically set pricing policies at run
time by changing the PricePolicy object that an existing Part
object refers to

l Of course, in an actual application, both the price of a Part and its
associated PricePolicy could be contained in a database

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5050

The Single Choice PrincipleThe Single Choice Principle

A corollary to the OCP is the Single Choice Principle

The Single Choice Principle:

Whenever a software system must support a
set of alternatives, ideally only one class in

the system knows the entire set of
alternatives

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5151

Principle #5Principle #5

The Liskov Substitution Principle:

Functions That Use References To Base
(Super) Classes Must Be

Able To Use Objects Of Derived

(Sub) Classes Without Knowing It

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5252

The Liskov Substitution PrincipleThe Liskov Substitution Principle

l The Liskov Substitution Principle (LSP) seems obvious given all
we know about polymorphism

l For example:

 public void drawShape(Shape s) {

 // Code here.

}

l The drawShape method should work with any subclass of the
Shape superclass (or, if Shape is a Java interface, it should work
with any class that implements the Shape interface)

l But we must be careful when we implement subclasses to insure
that we do not unintentionally violate the LSP

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5353

The Liskov Substitution PrincipleThe Liskov Substitution Principle

l If a function does not satisfy the LSP, then it probably makes
explicit reference to some or all of the subclasses of its superclass.
Such a function also violates the Open-Closed Principle, since it
may have to be modified whenever a new subclass is created.

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5454

LSP ExampleLSP Example

l Consider the following Rectangle class:

 // A very nice Rectangle class.

 public class Rectangle {

 private double width;

 private double height;

 public Rectangle(double w, double h) {

 width = w;

 height = h;

 }

 public double getWidth() {return width;}

 public double getHeight() {return height;}

 public void setWidth(double w) {width = w;}

 public void setHeight(double h) {height = h;}

 public double area() {return (width * height);

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5555

LSP Example (Continued)LSP Example (Continued)

l Now, had about a Square class? Clearly, a square is a rectangle,
so the Square class should be derived from the Rectangle class,
right? Let's see!

l Observations:
é A square does not need both a width and a height as attributes, but it will

inherit them from Rectangle anyway. So, each Square object wastes a little
memory, but this is not a major concern.

é The inherited setWidth() and setHeight() methods are not really appropriate
for a Square, since the width and height of a square are identical. So we'll
need to override setWidth() and setHeight(). Having to override these
simple methods is a clue that this might not be an appropriate use of
inheritance!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5656

LSP Example (Continued)LSP Example (Continued)

l Here's the Square class:

 // A Square class.

 public class Square extends Rectangle {

 public Square(double s) {super(s, s);}

 public void setWidth(double w) {

 super.setWidth(w);

 super.setHeight(w);

 }

 public void setHeight(double h) {

 super.setHeight(h);

 super.setWidth(h);

 }

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5757

LSP Example (Continued)LSP Example (Continued)

l Everything looks good. But check this out!

 public class TestRectangle {

 // Define a method that takes a Rectangle reference.

 public static void testLSP(Rectangle r) {

 r.setWidth(4.0);

 r.setHeight(5.0);

 System.out.println("Width is 4.0 and Height is 5.0" +

 ", so Area is " + r.area());

 if (r.area() == 20.0)

 System.out.println("Looking good!\n");

 else

 System.out.println("Huh?? What kind of rectangle is
 this??\n");

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5858

LSP Example (Continued)LSP Example (Continued)

 public static void main(String args[]) {

 //Create a Rectangle and a Square

 Rectangle r = new Rectangle(1.0, 1.0);

 Square s = new Square(1.0);

 // Now call the method above. According to the

 // LSP, it should work for either Rectangles or

 // Squares. Does it??

 testLSP(r);

 testLSP(s);

 }

 }

 Bob TarrDesign Patterns In Java
Some OO Design Principles

5959

LSP Example (Continued)LSP Example (Continued)

l Test program output:

 Width is 4.0 and Height is 5.0, so Area is 20.0

 Looking good!

 Width is 4.0 and Height is 5.0, so Area is 25.0

 Huh?? What kind of rectangle is this??

l Looks like we violated the LSP!

 Bob TarrDesign Patterns In Java
Some OO Design Principles

6060

LSP Example (Continued)LSP Example (Continued)

l What's the problem here? The programmer of the testLSP()
method made the reasonable assumption that changing the width
of a Rectangle leaves its height unchanged.

l Passing a Square object to such a method results in problems,
exposing a violation of the LSP

l The Square and Rectangle classes look self consistent and valid.
Yet a programmer, making reasonable assumptions about the base
class, can write a method that causes the design model to break
down

l Solutions can not be viewed in isolation, they must also be
viewed in terms of reasonable assumptions that might be made by
users of the design

 Bob TarrDesign Patterns In Java
Some OO Design Principles

6161

LSP Example (Continued)LSP Example (Continued)

l A mathematical square might be a rectangle, but a Square object
is not a Rectangle object, because the behavior of a Square object
is not consistent with the behavior of a Rectangle object!

l Behaviorally, a Square is not a Rectangle! A Square object is not
polymorphic with a Rectangle object.

 Bob TarrDesign Patterns In Java
Some OO Design Principles

6262

The Liskov Substitution PrincipleThe Liskov Substitution Principle

l The Liskov Substitution Principle (LSP) makes it clear that the
ISA relationship is all about behavior

l In order for the LSP to hold (and with it the Open-Closed
Principle) all subclasses must conform to the behavior that clients
expect of the base classes they use

l A subtype must have no more constraints than its base type, since
the subtype must be usable anywhere the base type is usable

l If the subtype has more constraints than the base type, there
would be uses that would be valid for the base type, but that
would violate one of the extra constraints of the subtype and thus
violate the LSP!

l The guarantee of the LSP is that a subclass can always be used
wherever its base class is used!

